intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Volume 3A:
System Programming Guide, Part 1

NOTE: The Intef® 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2, Order
Number 253669. Refer to all five volumes when evaluating your design
needs.

Order Number: 253668-021
October 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.ntm; including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depend-
ing on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*QOther names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel's website at http://www.intel.com

Copyright © 1997-2006 Intel Corporation

i Vol.3A

CHAPTER 1

ABOUT THIS MANUAL

1.1 PROCESSORS COVERED IN THIS MANUAL
OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

1.2

13 NOTATIONAL CONVENTIONS
1.3.1 Bit and Byte Order
13.2

133 Instruction Operands
134

135 Segmented Addressing
136

137

14 RELATED LITERATURE
CHAPTER 2

SYSTEM ARCHITECTURE OVERVIEW
OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE
Global and Local Descriptor Tables

Global and Local Descriptor Tables in 1A-32e Mode
System Segments, Segment Descriptors, and Gates

Gates in IA-32e Mode
Task-State Segments and Task Gates

Task-State Segments in IA-32e Mode
Interrupt and Exception Handling

Interrupt and Exception Handling I1A-32e Mode
Memory Management

Memory Management in |A-32e Mode
System Registers...........cocvvieinnn..

System Registers in IA-32e Mode
Other System Resources
2.2 MODES OF OPERATION
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER
System Flags and Fields in IA-32e Mode
2.4 MEMORY-MANAGEMENT REGISTERS
Global Descriptor Table Register (GDTR)
Local Descriptor Table Register (LDTR)
IDTR Interrupt Descriptor Table Register

n
=
_ A a4

—_

NooLnrRLWNND D

Hexadecimal and Binary Numbers

Syntax for CPUID, CR, and MSR Values
EXCEPLiONS .. it

Task Register (TR)

2.5 CONTROL REGISTERS

Reserved Bits and Software Compatibility

CPUID Qualification of Control Register Flags
2.6 SYSTEM INSTRUCTION SUMMARY
Loading and Storing System Registers
Verifying of Access Privileges
Loading and Storing Debug Registers
Invalidating Caches and TLBs
Controlling the Processor
Reading Performance-Monitoring and Time-Stamp Counters

Reading Counters in 64-Bit Mode

CONTENTS

PAGE

Vol. 3A iii

CONTENTS

PAGE
26.7 Reading and Writing Model-Specific Registerscovviviiiii e 2-31
26.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode.................. 2-31
CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT
3.1 MEMORY MANAGEMENT OVERVIEW. 3-1
3.2 USING SEGMENT S .ttt e e e e 3-3
3.2.1 BasiC FIat Model. . ..o 3-3
3.2.2 Protected FIBTMOdEL. ..o v 3-4
3.2.3 Multi-Segment Model. 3-5
324 Segmentation iN1A-32e Mode ... it 3-6
3.25 Paging and Segmentation ...t e 3-7
33 PHYSICAL ADDRESS SPACE . ..ttt ettt e 3-7
3.3.1 Intel® 64 Processors and Physical Address Spaceooovvvveeiriierinnennnn, 3-8
3.4 LOGICAL AND LINEAR ADDRESSESttt 3-8
34.1 Logical Address TranslationinlA-32eMode ...ttt 3-9
34.2 SEOMENT SIBCIOTS . . ittt ettt e e 3-9
343 SEgMENT REGISTOIS. . .ttt e 3-10
344 Segment Loading InstructionsinlA-32eMode ... 3-12
345 SEgMENT DS O PTOIS . . .ottt sttt ettt s 3-13
3.4.5.1 Code- and Data-Segment Descriptor TYPES. ...ovvvv vt iiieeaens 3-16
35 SYSTEM DESCRIPTOR TYPES ..\ttt 3-18
3.5.1 Segment Descriptor Tableso.vu it e 3-20
35.2 Segment Descriptor TablesinlA-32eMode..........c.cooviiiiii i 3-22
3.6 PAGING (VIRTUAL MEMORY) OVERVIEWo e et 3-22
3.6.1 Paging OptionS. . ..ot e 3-23
36.2 Page Tables and Directories in the Absence of Intel® 64 Technology 3-24
3.7 PAGE TRANSLATION USING 32-BIT PHYSICAL ADDRESSINGo 3-24
3.7.1 Linear Address Translation (4-KByte Pages)..........cvvviieiiiiiiiiiniinininnns 3-25
37.2 Linear Address Translation (4-MByte Pages).cooviiiiiiiiiiiiiiiiiiiianns 3-26
373 Mixing 4-KByte and 4-MByte Pages. ..ot 3-27
374 MEMOTY AlaSING .« v vttt e e 3-28
375 Base Address of the Page Directory........ovvvuiiviii it 3-28
3.76 Page-Directory and Page-Table ENTries.oovvviiii it 3-28
3.7.7 Not Present Page-Directory and Page-Table Entriesccoooviinnt, 3-33
3.8 36-BIT PHYSICAL ADDRESSING USING THE PAE PAGING MECHANISM 3-33
3.8.1 Enhanced Legacy PAE Paging.ovviii it 3-34
3.8.2 Linear Address Translation With PAE Enabled (4-KByte Pages) 3-35
3.8.3 Linear Address Translation With PAE Enabled (2-MByte Pages)................... 3-36
384 Accessing the Full Extended Physical Address Space With the Extended

Page-Table STrUCTUNEot e ettt 3-37
385 Page-Directory and Page-Table Entries With Extended Addressing Enabled 3-37
3.9 36-BIT PHYSICAL ADDRESSING USING THE PSE-36 PAGING MECHANISM............. 3-40
3.10 PAE-ENABLED PAGING INTA-32EMODE vvei ettt 3-42
3.10.1 IA-32e Mode Linear Address Translation (4-KByte Pages)......................t 3-43
3.10.2 IA-32e Mode Linear Address Translation (2-MByte Pages)..............covvvvvnn 3-44
3.10.3 Enhanced Paging Data STrUCTUMeS. ... ov vt 3-45
3.10.3.1 Intel® 64 Processors and Reserved Bit Checkingcoovvveiiiiiinnnn... 3-48
3.11 MAPPING SEGMENTS TO PAGES ...\ttt e 3-49
312 TRANSLATION LOOKASIDE BUFFERS (TLBS). ..ot vveee e 3-50

iv Vol. 3A

CONTENTS

PAGE
CHAPTER 4
PROTECTION
4.1 ENABLING AND DISABLING SEGMENT AND PAGE PROTECTION........ovvvvvvvennnn 4-2
4.2 FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND PAGE-LEVEL PROTECTION........ 4-2
421 Code Segment Descriptorin 64-bitMode ..ot 4-5
4.3 I 0 T 4-6
431 Limit Checking in 64-bitModecoiiiii i e 4-7
44 TYPE CHECKING . .ottt et e e e e e 4-7
441 Null Segment Selector Checking..........vviviii i i e 4-9
4411 NULL Segment Checkingin 64-bitMode ..o, 4-9
4.5 PRIVILEGE LEVELS. ..\ttt ittt et e et es 4-9
4.6 PRIVILEGE LEVEL CHECKING WHEN ACCESSING DATASEGMENTSocovvvinnn 4-12
46.1 Accessing Data in Code Segmentsvu ittt 4-14
4.7 PRIVILEGE LEVEL CHECKING WHEN LOADING THESS REGISTER........cvvvvvvnnnes 4-14
4.8 PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING PROGRAM CONTROL
BETWEEN CODE SEGMENTS ...ttt ittt 4-14
48.1 Direct Calls or Jumps to Code SEgMENTS. .. vv vt eeaas 4-15
48.1.1 Accessing Nonconforming Code Segments........c.ccoviiiiiiiiiiieiiinenennn. 4-16
48.1.2 Accessing Conforming Code SEgments.ovvvi i eeeeens 4-17
482 (0 (L= ol 0] (o] Y 4-18
483 Al GatES . e e et e e 4-19
4.8.3.1 IA-32e M0ode Call GateS ..\ v vttt e 4-20
484 Accessing a Code Segment Througha CallGate ..o ii i 4-22
485 Stack SWItChiNgo 4-25
485.1 Stack Switchingin 64-bitMode.ottt 4-28
486 Returning from a Called Procedurecoooviii i 4-29
487 Performing Fast Calls to System Procedures with the SYSENTER and
SYSEXIT INSTIUCTIONS .« vttt 4-30
48.7.1 SYSENTER and SYSEXIT Instructions inIA-32eModecovvvvvvinvnnnnn. 4-31
488 Fast System Calls in 64-bit Mode.........ccoviiii i 4-32
49 PRIVILEGED INSTRUCTIONS . . . ottt ettt e 4-34
4,10 POINTER VAL ATION .ottt et 4-34
4.10.1 Checking Access Rights (LAR INSTruction)ovvvviii i 4-35
4.10.2 Checking Read/Write Rights (VERR and VERW Instructions).................covvut 4-36
4103 Checking That the Pointer Offset Is Within Limits (LSL Instruction)................ 4-36
4104 Checking Caller Access Privileges (ARPL Instruction)..........ccoovvviiiiiiniinnn 4-37
410.5 Checking AlIGNMENT. ..o\t e e 4-39
4.11 PAGE-LEVEL PROTECTION ..ttt ittt 4-39
411.1 Page-Protection FIagscoviii i e 4-40
411.2 Restricting Addressable Domain.vvvuiin i e 4-40
4113 PagE T P it 4-40
4114 Combining Protection of Both Levels of Page Tablescoooviinnt, 4-41
4115 Overrides to Page Protectionco.vviiiiii i i 4-41
4.12 COMBINING PAGE AND SEGMENT PROTECTION. ... \vv e eeaaas 4-41
413 PAGE-LEVEL PROTECTION AND EXECUTE-DISABLEBITovvivi i 4-43
4131 Detecting and Enabling the Execute-Disable Bit Capability 4-43
4.13.2 Execute-Disable Bit Page Protection.coovvviiiiiiiii i 4-44
4133 Reserved Bit Checkingoviii i et 4-45
4134 Exception Handlingvv et e 4-47

Vol.3A v

CONTENTS

PAGE
CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING
5.1 INTERRUPT AND EXCEPTION OVERVIEW 5-1
5.2 EXCEPTION AND INTERRUPT VECTORS ...t 5-2
53 SOURCES OF INTERRUPTS. . . oottt 5-2
5.3.1 EXTErnal I e TUD S, .ot 5-2
53.2 Maskable Hardware INtermupts.vi e 5-4
533 Software-Generated INterruptS.ovvi i 5-5
54 SOURCES OF EXCEPTIONS . . . ettt et 5-5
541 Program-Error EXCEPTIONS\ vv it 5-5
54.2 Software-Generated EXCEPLIONSo v vt 5-5
543 Machine-Check EXCEPLIONS.t e 5-6
55 EXCEPTION CLASSIFICATIONS ..ot 5-6
5.6 PROGRAM OR TASK RESTART ..\ttt ettt et e 5-7
57 NONMASKABLE INTERRUPT (NMI) ...t e 5-8
5.7.1 Handling MUltiple NMISo e 5-9
5.8 ENABLING AND DISABLING INTERRUPTS . ..ottt e 5-9
5.8.1 Masking Maskable Hardware Interruptscooiiiii i 5-9
582 Masking Instruction Breakpointsoviiii i e 5-10
583 Masking Exceptions and Interrupts When Switching Stacks....................... 5-10
5.9 PRIORITY AMONG SIMULTANEOQUS EXCEPTIONS AND INTERRUPTS.................. 5-11
5.10 INTERRUPT DESCRIPTOR TABLE (IDT). vt v ettt et 5-12
511 IDT DESCRIPTORS. .ttt ettt e et e 5-14
512 EXCEPTION AND INTERRUPT HANDLUING ovie e e 5-15
5.12.1 Exception- or Interrupt-Handler Proceduresccovviiiiviiiiiiiiiiiienanns 5-16
512.1.1 Protection of Exception- and Interrupt-Handler Procedures 5-18
5121.2 Flag Usage By Exception- or Interrupt-Handler Procedure..................... 5-19
5.12.2 INEErTUPT TasKS vttt 5-20
513 ERROR CODE ..ttt ettt et et et e et et e e eans 5-22
514 EXCEPTION AND INTERRUPT HANDUING IN64-BITMODEc.ovviieieieenn 5-23
5.14.1 B4-BitMOde IDT ... 5-23
5142 64-Bit Mode Stack Frame.oviii 5-25
5143 IRETINIA-32 MOAE ... 5-25
5144 Stack Switching iN1A-32e MOde. . ..o vt 5-26
5145 Interrupt Stack Table. 5-27
5.15 EXCEPTION AND INTERRUPT REFERENCEoveii e 5-28
Interrupt O—Divide Error Exception (BDE)ovvvrviiiii i 5-29
Interrupt 1—Debug Exception (HDB)vviiii i 5-30
Interrupt 2—NMIINterrupt.o 5-31
Interrupt 3—Breakpoint Exception (#BP) ... 5-32
Interrupt 4—O0verflow Exception (HOF).vv i 5-33
Interrupt 5—BOUND Range Exceeded Exception (#BR)............covvviiiniinn, 5-34
Interrupt 6—Invalid Opcode Exception (HUD)covviiiiiiiiiiii s 5-35
Interrupt 7—Device Not Available Exception (#NM)cooiiiiiiiiiiint, 5-37
Interrupt 8—Double Fault Exception (HDF) ..o 5-39
Interrupt 9—Coprocessor Segment OVEITUN . ..o vt eiieieienanns 5-42
Interrupt 10—Invalid TSS Exception (BTS). .. .vvv v 5-43
Interrupt 11—Segment Not Present (#NP)o 5-46
Interrupt 12—Stack Fault Exception (#SS). ... 5-48
Interrupt 13—General Protection Exception (HGP)coovvviiiiiiiiiiinnnn, 5-50
Interrupt 14—Page-Fault Exception (HPF).........coiiiiii e 5-54

vi Vol.3A

CONTENTS

PAGE
Interrupt 16—x87 FPU Floating-Point Error (BMF).ovviiii i 5-58
Interrupt 17—Alignment Check Exception (HAC).ovvvvii i 5-60
Interrupt 18—Machine-Check Exception (HMC)ovvivii i 5-62
Interrupt 19—SIMD Floating-Point Exception (#XF).coooiiiiiiiiiiinnt, 5-64
Interrupts 32 to 255—User Defined Interrupts.coiiiiiiiiiiiiiiinnt, 5-67
CHAPTER 6
TASK MANAGEMENT
6.1 TASK MANAGEMENT OVERVIEW . ..ottt 6-1
6.1.1 TaSK StrUCTUNE .. et e e e 6-1
6.1.2 L) = 1 (= 6-2
6.1.3 EXECULING @ TaSK vttt e 6-3
6.2 TASK MANAGEMENT DATA STRUCTURES.ot 6-4
6.2.1 Task-State SegmeENnt (TSS) .. v vt e 6-4
6.2.2 L3132 o (o 6-7
6.2.3 TSS Descriptorin64-bitmode. ... 6-8
6.24 TaSK RIS O .« vttt e e 6-9
6.2.5 Task-Gate DeSCriPtOr . ..ottt 6-11
6.3 TASK SWITCHING . ottt e e e 6-12
6.4 TASK LINKING .« ot e 6-16
6.4.1 Use of Busy Flag To Prevent Recursive Task Switching...............ooovvivnint 6-18
6.4.2 Modifying Task LINKAgesSo v ettt ieieas 6-18
6.5 TASK ADDRESS SPACE. . . .ottt ettt et 6-19
6.5.1 Mapping Tasks to the Linear and Physical Address Spacesovvvvvvivnnnn 6-19
6.5.2 Task LOGical AdArESS SPaCE . ..ot v it ettt 6-20
6.6 16-BIT TASK-STATE SEGMENT (TSS) 1\ttt ittt 6-21
6.7 TASK MANAGEMENT IN64-BITMODE . ..ottt 6-23
CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT
7.1 LOCKED ATOMIC OPERATIONS ..\ttt et e 7-2
711 Guaranteed AtomiC OperationS.vuv i et ens 7-3
7.1.2 BUS LOCKING .« vttt et e e e e e 7-3
7.1.2.1 AUtomMatic LOCKING. .. .o v et e 7-4
7.1.22 Software Controlled Bus Locking...........coviiiiiiiii e 7-5
713 Handling Self- and Cross-Modifying Code.oiiiiiiiiiiiiiie e 7-6
714 Effects of a LOCK Operation on Internal Processor Caches....................oovts 7-7
7.2 MEMORY ORDERING . . o vttt ettt e et e et et 7-8
7.2.1 Memory Ordering in the Intel® Pentium® and Intel486™ Processors............... 7-8
722 Memory Ordering in P6 and More Recent Processor Families....................... 7-9
7.23 Out-of-Order Stores For String Operations.coiii it eeens 7-10
724 Strengthening or Weakening the Memory OrderingModel 7-11
7.3 PROPAGATION OF PAGE TABLE AND PAGE DIRECTORY ENTRY CHANGES TO
MULTIPLE PROCESSORS ..ottt ittt et 7-13
74 SERIALIZING INSTRUCTIONS . ..ot 7-14
7.5 MULTIPLE-PROCESSOR (MP) INITIALIZATION . .ot 7-15
751 BSP @nd AP ProCESSOMS . ..ottt et e 7-16
7.5.2 MP Initialization Protocol Requirements and Restrictions
for Intel Xeon Processors7-17
753 MP Initialization Protocol Algorithm for Intel Xeon Processors..................... 7-17
754 MP Initialization EXample.o e 7-19

Vol. 3A Vi

CONTENTS

PAGE
7541 Typical BSP Initialization Sequence. ... 7-19
754.2 Typical AP Initialization SEQUENCE.o e 7-21
755 Identifying Logical Processorsinan MP System.............cccvviviiiiiennnnnnn. 7-22
76 HYPER-THREADING AND MULTI-CORE TECHNOLOGY.vvvvviiei e 7-24
7.7 DETECTING HARDWARE MULTI-THREADING SUPPORT AND TOPOLOGY.............. 7-24
7.7.1 Initializing Processors Supporting Hyper-Threading Technology 7-25
7.7.2 Initializing Dual-Core ProCesSors ... ovvv vt 7-25
7.73 Executing Multiple Threads on an Intel® 64 or IA-32 Processor Supporting
Hardware Multi-Threading. e i e 7-26
774 Handling Interrupts on an IA-32 Processor Supporting Hardware Multi-Threading . 7-26
78 INTEL® HYPER-THREADING TECHNOLOGY ARCHITECTURE.ovvvvvvvennnns, 7-27
781 State of the Logical Processors. . ..o ottt 7-28
7.8.2 APIC FUNCHONAlTY © oottt e 7-29
783 Memory Type Range Registers (MTRR).ovviiiiii i 7-29
784 Page Attribute Table (PAT) e 7-30
785 Machine Check ArChiteCtUrE ..o v vt 7-30
786 Debug Registers and EXtENSIONS. ... v vttt 7-30
787 Performance Monitoring COUNTErSviii e e e i ieaaaans 7-31
788 IA32_MISC_ENABLE MSR. ..\ttt e 7-31
789 I [=Taa o] YA 0 =T o 7-31
7.8.10 Serializing INStrUCTIONS et e 7-31
7811 MICROCODE UPDATE RESOUMCES .ot v vttt e e ee e et naans 7-31
7812 Self Modifying Code. v e e 7-32
7.8.13 Implementation-Specific HT Technology Facilities....................cooiiintt. 7-32
7.813.1 Processor Caches v 7-32
78132 Processor Translation Lookaside Buffers (TLBS)covvviiiininnnninnnn. 7-33
78133 THErmal MONITOr . ..ot e 7-33
78.134 External Signal Compatibility ... 7-33
79 DUAL-CORE ARCHITECTURE ... ittt ettt 7-34
791 [a | or= I o Tof =Y o Y U7 0 o 7-35
79.2 Memory Type Range Registers (MTRR).coviiiiiii i 7-35
793 Performance Monitoring CoUNTersvuviii i 7-35
794 IA32_MISC_ENABLE MSR. ..\ttt e 7-35
795 MICROCODE UPDATE RESOUMCES .ot ttete ettt ieee et et ie e aieenaas 7-36
7.10 PROGRAMMING CONSIDERATIONS FOR HARDWARE MULTI-THREADING
CAPABLEPROCESSORS . .ttt ettt e 7-36
7.10.1 Hierarchical Mapping of Shared Resources. ..o, 7-36
7.10.2 Identifying Logical Processorsinan MP System...........ooviiiiiiiiiiiinnnnns 7-37
7.103 Algorithm for Three-Level Mappings of APIC_IDcoviiiiiiiiiiinn.., 7-39
7.104 Identifying Topological RelationshipsinaMP Systemcocoviviiiines. 7-43
7.11 MANAGEMENT OF IDLE AND BLOCKED CONDITIONS. ... ov e 7-47
7111 HUT INStrUCHION .« .ot e e i e 7-48
7.11.2 PAUSE INSTTUCTION .ottt e e 7-48
7113 Detecting Support MONITOR/MWAIT Instruction...........covvvvviiviiinninninn 7-48
7114 MONITOR/MWAIT INSTTUCTION . . ot v ettt e eas 7-49
7115 Monitor/Mwait Address Range Determinationccocovvviviiiiiiiiinnnnnns 7-51
7116 Required Operating System SUPPOrtovieii e 7-51
7.116.1 Use the PAUSE Instruction in Spin-Wait LoopS...........cvviviiiiiiiinnnnt, 7-52
7.116.2 Potential Usage of MONITOR/MWAIT in COIdle LoOpSvvvvvvviininnnnnnns 7-52
71163 Halt Idle Logical ProCeSSOTS.t e 7-54
71164 Potential Usage of MONITOR/MWAIT inC1Idle LoopS.......ovvvvvnvnannnnnn.. 7-54

viii Vol. 3A

CONTENTS

PAGE
71165 Guidelines for Scheduling Threads on Logical Processors Sharing
EXECULION RESOUMCES .. vttt 7-55
7.116.6 Eliminate Execution-Based Timing LOOPS.vvvviviii i ieaen s 7-55
7.11.6.7 Place Locks and Semaphores in Aligned, 128-Byte Blocks of Memory........... 7-56
CHAPTER 8
ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC)
8.1 LOCAL AND I/0 APICOVERVIEW . . o oottt et e e 8-1
8.2 SYSTEMBUS VS. APIC BUS . . .t 8-5
83 THE INTEL® 82489DX EXTERNAL APIC, THE APIC, AND THEXAPIC........ooees 8-5
84 LOC AL APIC ettt e e e e 8-6
84.1 The Local APIC BIOCK Diagram . .. vv vt e 8-6
84.2 Presence of the Local APIC. v ittt 8-9
84.3 €nabling or Disabling the Local APIC ...t e eeeaes 8-10
844 Local APIC Status and LOCation.vvve vt aas 8-11
845 Relocating the Local APIC REGISTerSvvviii e i e 8-11
846 LOCAl APIC D .ttt et e 8-12
84.7 LOCal AL StaTE. ottt e 8-13
84.7.1 Local APIC State After Power-UporReset.........cccovviiiiiiiiiiiiinnnnnnns 8-13
84.7.2 Local APIC State After It Has Been Software Disabled......................... 8-13
84.7.3 Local APIC State After an INIT Reset (“Wait-for-SIPI" State).................... 8-14
84.7.4 Local APIC State After It Receives an INIT-Deassert IPl...............covvvn, 8-14
8428 Local APIC Version REGISTEr. ... v vttt e e 8-14
8.5 HANDLING LOCAL INTERRUPTS ..ttt 8-15
8.5.1 Local Vector Table. e 8-15
85.2 Valid INtermUpT VECTOS ...ttt 8-19
853 Error Handling.ot e 8-20
854 [O I 1= 8-21
855 LoCal INterTUPT ACCEPTANCE. « . vttt ettt iaaas 8-23
8.6 ISSUING INTERPROCESSOR INTERRUPTS ..ottt it 8-23
8.6.1 Interrupt Command Register (ICR)vvuii i 8-23
8.6.2 Determining IPI Destinationovvuieiii i e e 8-29
8.6.2.1 Physical Destination Modeovvvii i e 8-30
8.6.2.2 Logical Destination Modeoviii 8-30
8.6.2.3 Broadcast/Self Delivery Mode.coovviii i 8-32
86.24 Lowest Priority DeliveryMode ..o 8-33
86.3 IPI Delivery and ACCEPTaNCE. . ..o v vttt ettt et ae et 8-34
8.7 SYSTEM AND APIC BUS ARBITRATION . ..o v ettt 8-34
8.8 HANDLING INTERRUPTS ...ttt e e 8-35
8.8.1 Interrupt Handling with the Pentium 4 and Intel Xeon Processors................. 8-35
8.8.2 Interrupt Handling with the P6 Family and Pentium Processors 8-36
883 Interrupt, Task, and Processor Priority.oveviiiiii e 8-38
8.8.3.1 Task and Processor PriOMTIES ... vvvvt vt cin e 8-39
884 Interrupt Acceptance for Fixed INTerrUPtSovvvrii e e 8-40
885 Signaling Interrupt Servicing Completion. ... 8-42
8.8.6 Task Priority iN1A-328 MOdeov e 8-42
8.8.6.1 Interaction of Task Priorities between CRBand APIC.............oovivvnen. 8-43
89 SPURIOUS INTERRUPT . . sttt ettt e 8-44
8.10 APIC BUS MESSAGE PASSING MECHANISM AND PROTOCOL (P6 FAMILY,
PENTIUM PROCESSORS) ..ottt ettt 8-45
8.10.1 BUS MeSSage FOMMATS ... vvie ettt 8-46
8.11 MESSAGE SIGNALLED INTERRUPTS. ..ottt 8-46

Vol. 3A ix

CONTENTS

PAGE
8.11.1 Message Address Register FOrmat.ovuvive i 8-47
8.11.2 Message Data Register FOrmMat ... ov vt 8-48
CHAPTER 9
PROCESSOR MANAGEMENT AND INITIALIZATION
9.1 INITIALIZATION OVERVIEW . . oottt et 9-1
9.1.1 Processor State After Reset.vv it 9-2
9.1.2 Processor Built-In Self-Test (BIST)ovvvie e 9-2
9.1.3 Model and Stepping Informationoov i 9-5
9.1.4 First INStruction EXECUTEd\ v vt 9-6
9.2 X87 FPUINITIAUIZATION . . o ettt et e e e e e e 9-6
9.2.1 Configuring the x87 FPU Environment 9-6
9.2.2 Setting the Processor for x87 FPU Software Emulation........................... 9-7
93 CACHE ENABLING . oottt ettt e e e e eens 9-8
94 MODEL-SPECIFIC REGISTERS (MSRS) ...ttt ittt it 9-9
95 MEMORY TYPE RANGE REGISTERS (MTRRS) ..ttt vt i 9-9
96 INITIALIZING SSE/SSE2/SSE3/SSSE3 EXTENSIONS ... ovviv e 9-10
9.7 SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE OPERATION. 9-10
9.7.1 Real-Address Mode IDT. e e 9-11
9.7.2 NMIInterrupt Handlingooo i e 9-11
9.8 SOFTWARE INITIALIZATION FOR PROTECTED-MODE OPERATION..........ovvvvnes 9-11
9.8.1 Protected-Mode System Data Structures. ..ot i 9-12
9.8.2 Initializing Protected-Mode Exceptions and Interrupts.cocovviviinnints. 9-13
9.8.3 INitializiNg Paging oo 9-13
9.84 Initializing Multitasking 9-14
9.85 INitializZiNg [A-326 MOot 9-14
9.8.5.1 IA-32e Mode System Data Structures.cvvivii i 9-15
9.8.5.2 IA-32e Mode Interrupts and EXCEPLiONSvv v i 9-15
9.8.5.3 64-bit Mode and Compatibility Mode Operation............covvviiiiinnnnnn.. 9-16
9854 Switching Out of IA-32e Mode Operation.c.covvvviiiiiiiiiiiiinaen, 9-16
99 MODE SWITCHING . . o ottt a e 9-17
9.9.1 Switching to Protected Mode. ... vt 9-17
9.9.2 Switching Back to Real-Address Mode.ovvviii i 9-18
9.10 INITIALIZATION AND MODE SWITCHING EXAMPLEcovviiiii e 9-19
9.10.1 ASSEMDIET USA0E ..ottt it s 9-22
9.10.2 STARTUP.ASM LiStiNg . . v v v vt e ettt et e 9-23
9.10.3 MAIN.ASM SoUTCE COAE. . . .o e et 9-34
9.104 SUPPOMtING FilES. . o vttt 9-34
9.11 MICROCODE UPDATE FACILITIES . .ot v ettt e e 9-36
9.11.1 MiICrocode UPdate. . ..ottt et e e e 9-37
9.11.2 Optional Extended Signature Tableooiiii it e 9-41
9.11.3 Processor Identificationoovi i 9-41
9.11.4 Platform Identificationovvu i 9-42
9.11.5 Microcode Update ChecKSUM v it aaaaas 9-45
9.11.6 Microcode Update Loadervvriii i 9-45
9.11.6.1 Hard ResetsinUpdate Loading ..o 9-46
9.11.6.2 Update in @ MUltiprocessor SYStemvi i eiaaas 9-46
9.11.63 Update in a System Supporting Intel Hyper-Threading Technology 9-47
9.11.64 Update in a System Supporting Dual-Core Technologyccovvvvnnat. 9-47
9.11.6.5 Update Loader ENhancements vttt eeaas 9-47
9.11.7 Update Signature and Verification ... 9-48
9.11.71 Determining the Signature ... e e 9-48

X Vol. 3A

CONTENTS

PAGE
9.11.7.2 Authenticatingthe Update. ... i 9-49
9.11.8 Pentium 4, Intel Xeon, and P6 Family Processor

Microcode Update Specifications9-50

9.11.8.1 Responsibilities of the BIOSot 9-50
9.11.8.2 Responsibilities of the Calling Programcoiiiiiiiiiiii i 9-53
9.11.83 Microcode Update FUNCHIONS ov vt 9-56
9.11.84 INT T5H-based INterface.ovvvri i e 9-56
9.11.85 Function OOH—Presence Test. .. .vuiri i e 9-57
9.11.86 Function 01TH—Write Microcode UpdateDatacoovviiviiinn.., 9-58
9.11.8.7 Function 02H—Microcode Update Control............cccoviiiiiiiiiiiianns, 9-63
9.11.88 Function 03H—Read Microcode Update Data.............cccovvivivinininnnnn, 9-64
9.11.89 REtUMN COdBS ..ttt e e 9-65
CHAPTER 10
MEMORY CACHE CONTROL
10.1 INTERNAL CACHES, TLBS, AND BUFFERS ...\ttt 10-1
10.2 CACHING TERMINOLOGY .. ettt e et ettt e ees 10-5
103 METHODS OF CACHING AVAILABLE.ottt 10-6
10.3.1 Buffering of Write Combining Memory Locationscoviiiiiiiininnns 10-9
10.3.2 ChooSiNg @ MEMOTY TP . v ittt 10-10
1033 Code Fetches in Uncacheable Memoryo.ovviiiiii i 10-11
104 CACHE CONTROL PROTOCOL . vttt e vt e e e et e e e e e e et ea s 10-11
10.5 CACHE CONTROL & vttt e et e e et e e e e e e e e e e e e 10-12
10.5.1 Cache Control Registers and BitSovviviiiiii e 10-13
10.5.2 Precedence of Cache CoNtrolS.vvvve vt 10-18
10.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il Processors 10-18
10.5.2.2 Selecting Memory Types for Pentium Il and More Recent Processor Families . 10-20
10.5.2.3 Writing Values Across Pages with Different Memory Types.................. 10-21
10.5.3 Preventing Caching.o e 10-22
10.5.4 Disabling and Enablingthe L3 Cache.........oviiii i 10-22
10.5.5 Cache Management INStructions.ooiiii i e 10-22
10.5.6 L1 Data Cache ContexXt MOde.ovvvve i 10-23
10.5.6.1 AdaPtiVE MO . v vttt 10-24
10.5.6.2 SNArEd MOGE . .ottt 10-24
10.6 SELF-MODIFYING CODE ..ottt 10-24
10.7 IMPLICIT CACHING (PENTIUM 4, INTEL XEON, AND P6 FAMILY PROCESSORS)........ 10-25
10.8 EXPLICIT CACHING. oottt e e e e eees 10-26
109 INVALIDATING THE TRANSLATION LOOKASIDE BUFFERS (TLBS)....vvvvvvevnenn 10-26
1010 STORE BUFFER. ..\ttt ittt 10-27
1011 MEMORY TYPE RANGE REGISTERS (MTRRS). ..t vvi i ei i 10-27
10.11.1 MTRR Feature Identificationoviiiiii e 10-29
10.11.2 Setting Memory Ranges WithMTRRSoiiiiii e 10-30
10.11.2.1 IA32_MTRR_DEF_TYPEMSR. ... ittt 10-30
10.11.2.2 Fixed RaNGE MTRRS ... ittt i 10-31
10.11.23 Variable RaNGe MTRRS.o 10-32
10.11.3 Example Base and Mask Calculations ...t 10-35
10.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical Address Support 10-36
10114 Range Size and Alignment Requirementc.oiiiiiiiiiiiiiiiiis, 10-37
10.11.4.1 MTRR PreCedBNCESot 10-37
10.11.5 MTRR INITIaliZation.o v 10-38
10.11.6 Remapping Memory TYPESttt 10-38
10.11.7 MTRR Maintenance Programming Interface.................ccociiiiiiiiiiiinnn, 10-39

Vol. 3A Xi

CONTENTS

PAGE
10.11.7.1 MemTypeGet() FUNCHION. vv e 10-39
10.11.7.2 MemTypeSet() FUNCTIONv i e 10-40
10.11.8 MTRR Considerations in MP Systems. ...t e 10-43
10.11.9 Large Page Size Considerations.ovviriiiii ittt ei i 10-44
10.12 PAGE ATTRIBUTE TABLE (PAT) .ttt ettt 10-44
10.121 Detecting Support for the PAT Feature ... 10-45
10.12.2 N O N N Y o 10-45
10.12.3 Selecting a Memory Type fromthe PAT ... 10-46
10.124 Programming the PATt et e 10-47
10.12.5 PAT Compatibility with Earlier IA-32 Processorscooovvvivivinineenanns. 10-48
CHAPTER 11
INTEL® MMX™ TECHNOLOGY SYSTEM PROGRAMMING
11.1 EMULATION OF THE MMX INSTRUCTION SET ... vt v e 11-1
11.2 THE MMX STATE AND MMX REGISTER ALIASING.o e e 11-1
11.2.1 Effect of MMX, x87 FPU, FXSAVE, and FXRSTOR Instructions on the x87
FPU Tag Word . ..o e ittt e e e e 11-3
11.3 SAVING AND RESTORING THE MMX STATE AND REGISTERS.oviiiieienns 11-4
114 SAVING MMX STATE ON TASK OR CONTEXT SWITCHESoovviiiiiii i 11-5
11.5. EXCEPTIONS THAT CAN OCCUR WHEN EXECUTING MMX INSTRUCTIONS............. 11-5
11.5.1 Effect of MMX Instructions on Pending x87 Floating-Point Exceptions............ 11-6
116 DEBUGGING MMX CODE ..ttt ettt ettt et 11-6
CHAPTER 12
SYSTEM PROGRAMMING FOR STREAMING SIMD INSTRUCTION SETS
121 PROVIDING OPERATING SYSTEM SUPPORT FOR SSE/SSE2/SSE3/SSSE3
EXTENSIONS. . .t e e 12-1
12.1.1 Adding Support to an Operating System for SSE/SSE2/SSE3/SSSE3 Extensions ... 12-1
12.1.2 Checking for SSE/SSE2/SSE3/SSSE3 Extension Support...........covvvvvvnan... 12-2
12.1.3 Checking for Support for the FXSAVE and FXRSTOR Instructions................. 12-2
1214 Initialization of the SSE/SSE2/SSE3/SSSE3 EXtENSIONS . ..o vvvvvvvi e 12-2
12.1.5 Providing Non-Numeric Exception Handlers for Exceptions Generated by the
SSE/SSE2/SSE3/SSSE3 INSTrUCTIONS . vttt 12-4
1216 Providing an Handler for the SIMD Floating-Point Exception (#XF)................ 12-6
12.1.6.1 Numeric Error flagand IGNNEH# e 12-6
12.2 EMULATION OF SSE/SSE2/SSE3/SSSE3 EXTENSIONS ... 12-7
123 SAVING AND RESTORING THE SSE/SSE2/SSE3/SSSE3 STATE. .. vvvvvvvi i 12-7
124 SAVING THE SSE/SSE2/SSE3/SSSE3 STATE ON TASK OR CONTEXT SWITCHES....... 12-7
125 DESIGNING OS FACILITIES FOR AUTOMATICALLY SAVING X87 FPU, MMX, AND
SSE/SSE2/SSE3/SSSE3 STATE ON TASK OR CONTEXT SWITCHES.ovvvevvnen 12-8
12.5.1. Using the TS Flag to Control the Saving of the x87 FPU, MMX, SSE, SSE2,
SSE3 aNd SSSE3 State .. v vttt e 12-9
CHAPTER 13
POWER AND THERMAL MANAGEMENT
13.1 ENHANCED INTEL SPEEDSTEP® TECHNOLOGY ...\t eeeetiiii e e e e eeiiiieeaeens, 13-1
13.1.1 Software Interface For Initiating Performance State Transitions 13-1
13.2 P-STATE HARDWARE COORDINATION. . ..ttt et e 13-2
133 MWAIT EXTENSIONS FOR ADVANCED POWER MANAGEMENTccovvvvninnnn. 13-4
134 THERMAL MONITORING AND PROTECTION . ..o v vt 13-5
13.4.1 Catastrophic Shutdown Detectorovuviiri e 13-6

xii Vol. 3A

CONTENTS

PAGE

134.2 THErmMal MONITOr. ..ottt 13-6
13.4.2.1 Thermal Monitor 1. ... e 13-7
13.4.2.2 Thermal MoNitor 2. ..o e 13-7
134.23 Two Methods for Enabling TM2 e 13-7
13424 Performance State Transitions and Thermal Monitoring 13-8
13.4.25 Thermal Status INformation.vvvi e 13-9
1343 Software Controlled Clock Modulationcovviiiiiii i 13-10
1344 Detection of Thermal Monitor and Software Controlled Clock Modulation

L o1 =L 13-12
13.4.5 On Die Digital Thermal SENSOrS.ttt 13-12
13.4.5.1 Digital Thermal Sensor EnumMeration.c.covuviiiiiii s 13-12
1345.2 Reading the Digital SENSOr.vvvi it 13-12
CHAPTER 14
MACHINE-CHECK ARCHITECTURE
14.1 MACHINE-CHECK EXCEPTIONS AND ARCHITECTURE\ vvv v ieeieeeaaes 14-1
14.2 COMPATIBILITY WITH PENTIUM PROCESSOR. oot 14-1
14.3 MACHINE-CHECK MSRS ..ot 14-2
14.3.1 Machine-Check Global ControlMSRSvi e 14-2
14.3.1.1 IA32_MCG_CAP MSR. .ttt 14-3
143.1.2 IA32_MCG_STATUS MSR. ..ottt 14-4
143.1.3 IA32_MCG_CTLMSR . i e 14-4
14.3.2 Error-Reporting Register Banksoviiiiiiiii i 14-5
14.3.2.1 A2 MO _CTL MSRS .\ttt ettt e e et e 14-5
143.2.2 IA32 MU _STATUS MSRS ..ttt e 14-5
14323 IA32_MUi_ADDR MSRS. . . ittt ettt 14-9
143.2.4 IA32_MCI_MISC MSRS .ttt ettt et et e e e 14-10
14.3.2.5 IA32_MCG Extended Machine Check State MSRS ...t 14-10
1433 Mapping of the Pentium Processor Machine-Check Errors

to the Machine-Check Architectureoviiiii e 14-13
144 ENHANCED CACHE ERROR REPORTING ...t vvvi et 14-13
14.5 MACHINE-CHECK AVAILABILITY .ttt 14-14
14.6 MACHINE-CHECK INITIAUZATION . . . oot 14-14
14.7. INTERPRETING THEMCA ERROR CODES ...\ttt it 14-16
14.7.1 SIMPIE ErTOr COOBS ..ttt ettt e e 14-16
14.7.2 Compound ErTOr COAES. v ettt et e 14-17
14.7.2.1 Correction Report Filtering (F) Bitcovvvvvi i 14-18
14.7.2.2 Transaction Type (TT)Sub-Field. ..o s 14-18
14.7.23 Level (LL) Sub-Field. ..o 14-19
14.7.2.4 Request (RRRR) SUD-FIeld.ovvi e 14-19
14.7.2.5 Bus and INterconNeCt ErTOrSvvvvt ettt 14-20
14.7.3 Machine-Check Error Codes Interpretationcoovviiiiiiiiiiiinninnns 14-20
14.8 GUIDELINES FOR WRITING MACHINE-CHECK SOFTWARE . ..o 14-21
14.8.1 Machine-Check ExceptionHandler. ...t 14-21
14.8.2 Enabling BINIT# Drive and BINIT# Observation............c.cooviiiiieininn.n. 14-22
1483 Pentium Processor Machine-Check ExceptionHandling 14-23
1484 Logging Correctable Machine-Check ErTors.........ooovvviiiiiii i iiiiianns 14-23
CHAPTER 15
8086 EMULATION
15.1 REAL-ADDRESS MODE . . .ttt ittt et e e 15-1
15.1.1 Address Translation in Real-AddressMode.ccoviiiiiiiiii i 15-3

Vol. 3A xiii

CONTENTS

PAGE
15.1.2 Registers Supported in Real-Address Mode.cccoviiiiiiiii i 15-4
15.1.3 Instructions Supported in Real-Address Mode.ccoviviiiiii i 15-4
15.1.4 Interrupt and Exception Handling 15-6
15.2 VIRTUAL-B08E MODEottt ee et e e et ees 15-8
15.2.1 Enabling Virtual-8086 Mode 15-9
15.2.2 Structure of @ Virtual-8086 Taskovvvviii i 15-9
15.2.3 Paging of Virtual-8086 Tasks.cciuiriiiiiiii it ici i eieaes 15-10
15.2.4 Protection within a Virtual-8086 Taskcoviiiiiiiic s 15-11
15.2.5 Entering Virtual-8086 Mode. ... it e 15-11
15.2.6 Leaving Virtual-8086 Mode.t 15-14
15.2.7 SeNSITIVE INSTIUCTIONS .o\ttt e 15-15
15.2.8 Virtual-8086 MOde 1/0 .t 15-15
15.2.8.1 1/0-Port-Mapped /0.o 15-15
15.28.2 Memory-Mapped /0.o 15-16
15.2.8.3 Special /O BUFfrS . ..ot e 15-16
153 INTERRUPT AND EXCEPTION HANDLING IN VIRTUAL-8086 MODE 15-16
15.3.1 Class 1—Hardware Interrupt and Exception Handling in Virtual-8086 Mode...... 15-18
15.3.1.1 Handling an Interrupt or Exception Through a Protected-Mode Trap
O INTerTUPT Gate. ..ottt e e e 15-18
153.1.2 Handling an Interrupt or Exception With an 8086 Program Interrupt
or Exception Handler. e 15-20
153.1.3 Handling an Interrupt or Exception Througha Task Gate..................... 15-21
15.3.2 Class 2—Maskable Hardware Interrupt Handling in Virtual-8086 Mode
Using the Virtual Interrupt Mechanism ... 15-22
1533 Class 3—Software Interrupt Handling in Virtual-8086 Mode..................... 15-24
15.3.3.1 Method 1: Software Interrupt Handling ..., 15-27
153.3.2 Methods 2 and 3: Software Interrupt Handling 15-28
15333 Method 4: Software Interrupt Handling ..., 15-28
15334 Method 5: Software Interrupt Handling ... 15-28
15335 Method 6: Software Interrupt Handling ..., 15-29
154 PROTECTED-MODE VIRTUALINTERRUPTS ... it 15-30
CHAPTER 16
MIXING 16-BIT AND 32-BIT CODE
16.1 DEFINING 16-BIT AND 32-BIT PROGRAMMODULESo 16-2
16.2 MIXING 16-BIT AND 32-BIT OPERATIONS WITHIN A CODE SEGMENT 16-2
163 SHARING DATA AMONG MIXED-SIZE CODE SEGMENTSoviii i 16-4
164 TRANSFERRING CONTROL AMONG MIXED-SIZE CODE SEGMENTSceovvivnen. 16-4
16.4.1 Code-Segment POINter Size. ... ovv i 16-5
16.4.2 Stack Management for Control Transfer..........ccoviiiiiiii i 16-5
16.4.2.1 Controlling the Operand-Size Attribute ForaCallcoviiint 16-7
164.2.2 Passing Parameters WithaGate. ..o 16-8
16.4.3 Interrupt Control Transfers. .. o. et e 16-8
1644 Parameter Translationovuviii 16-8
1645 Writing Interface Proceduresovuiiiiii 16-9
CHAPTER 17
ARCHITECTURE COMPATIBILITY
17.1 PROCESSOR FAMILIES AND CATEGORIES . ..o v et et 17-1
17.2 RESERVED BITS. vttt e e 17-2
17.3 ENABLING NEW FUNCTIONS AND MODES. ...ttt 17-2
174 DETECTING THE PRESENCE OF NEW FEATURES THROUGH SOFTWARE 17-3

Xiv Vol. 3A

CONTENTS

PAGE
175 INTEL MMX TECHNOLOGY . . oottt e ettt 17-3
17.6 STREAMING SIMD EXTENSIONS (SSE) . .o oo e it 17-3
17.7 STREAMING SIMD EXTENSIONS 2 (SSE2). .ot vo v 17-4
17.8 STREAMING SIMD EXTENSIONS 3 (SSE3). v v 17-4
179 HYPER-THREADING TECHNOLOGYttt aee s 17-4
17.10 DUAL-CORE TECHNOLOGY ..\ttt ettt e et 17-4
17.11 SPECIFIC FEATURES OF DUAL-CORE PROCESSORiiiii i 17-5
17.12 NEW INSTRUCTIONS IN THE PENTIUM AND LATER IA-32 PROCESSORS. 17-5
17.12.1 Instructions Added Prior to the Pentium Processor.covvvviiiivinnninnns 17-5
17.13 OBSOLETEINSTRUCTIONS ...ttt et 17-7
17.14 UNDEFINED OPCODES ... vttt ettt et et e et et 17-7
17.15 NEW FLAGS IN THE EFLAGS REGISTER. ..o\ttt 17-7
17.15.1 Using EFLAGS Flags to Distinguish Between 32-Bit IA-32 Processors. 17-7
17.16 STACK OPERATIONS . ..ttt et e 17-8
17.16.1 PUSH SP . e 17-8
17.16.2 EFLAGS Pushed onthe Stack........ovvveii e 17-8
1707 XB7 FPU . i e e 17-9
17171 Control Register CRO FIags.ottt e 17-9
17.17.2 X87 FPU Status Word.ot 17-10
17.17.21 Condition Code Flags (CO through C3)......ovveiiii s 17-10
17.17.2.2 STACK FAUIL FIag . oo vttt 17-10
17173 X87 FPU Control Wordot 17-10
17174 X87 FPU Tag Word ..ot e 17-11
17175 D=1 = LY/ =1 17-11
17.17.51 AN L 17-11
17.175.2 Pseudo-zero, Pseudo-NaN, Pseudo-infinity, and Unnormal Formats........... 17-12
17.17.6 Floating-Point EXCEPLIONS.ot e 17-12
17.17.6.1 Denormal Operand Exception (HD).vvvirvii i i 17-12
17.176.2 Numeric Overflow Exception (HO)ovvriiiiiii s 17-13
171763 Numeric Underflow Exception (HU)........oooviiiiiii i 17-13
171764 EXCEPtioN PreCedBNCe . ..o\ vt 17-14
171765 CS and EIP For FPU EXCEPLIONSo v ettt 17-14
171766 FPU Error Signals. .. .o vv ettt et 17-14
17.176.7 Assertion of the FERRHEPIN . ..o 17-14
171768 Invalid Operation Exception On Denormals.ovovviviiiiiininiiennes 17-15
17.17.6.9 Alignment Check Exceptions (BAC)o.vvrvii i 17-15
17.17.6.10 Segment Not Present Exception During FLDENVccoviviienes. 17-15
17.17.6.11 Device Not Available Exception (HNM)...... ..ot 17-15
1717612 Coprocessor Segment Overrun EXCeption.oovvviiiiiii e, 17-16
1717613 General Protection Exception (HGP) ... 17-16
1717614 Floating-Point Error Exception (BMF) ..o 17-16
17.17.7 Changes to Floating-Point Instructions. ... 17-16
17.17.7.1 FDIV, FPREM, and FSQRT INStrUCtioNSovvv vt i 17-16
171772 FSCALE INStrUCHON ..o v ettt et i 17-16
17.17.7.3 FPREMT INSTrUCTION .« vttt ettt et 17-17
171774 FPREM INSTIUCTION. ..o vttt e 17-17
17.17.75 FUCOM, FUCOMP, and FUCOMPP INStructionsovvviiviinnneniinnns 17-17
1717.76 FPTAN INStrUCHION. ..ottt e 17-17
1717.7.7 StACK OV lIOW. . ot 17-17
17.17.7.8 FSIN, FCOS, and FSINCOS INSTrUCtioNSvvvve it ciei s 17-18
171779 FPATAN INSTIUCTION & vttt et 17-18
17.17.7.10 F2XMT INSTIUCHION. ..ot 17-18

Vol. 3A Xv

CONTENTS

PAGE
17.17.7.11 FLD INStrUCHION « .t e 17-18
1717712 FXTRACT INSTTUCTION. . vttt 17-18
1717.7.13 Load Constant INSTrUCtioNS oot e 17-19
1717714 FSETPM INSITUCTION . .o vt 17-19
1717715 FXAM INSTIUCTION ..ottt 17-19
1717.7.16 FSAVE and FSTENV INStructionSo v 17-19
17178 Transcendental INSTrUCTIONS v vttt 17-19
17179 Obsolete INSTIUCTIONS ... v .ttt e 17-20
171710 WAIT/FWAIT Prefix Differences.ovvviv i i 17-20
17.17.11 Operands Split Across Segments and/orPagescovvvviiiiiiienannn. 17-20
17.17.12 FPU Instruction Synchronization..........ovuiiiiini e 17-20
17.18 SERIAUZING INSTRUCTIONSttt ettt 17-21
17.19 FPU AND MATH COPROCESSOR INITIALIZATION ve e 17-21
17.19.1 Intel® 387 and Intel® 287 Math Coprocessor Initialization 17-21
17.19.2 Intel486 SX Processor and Intel 487 SX Math Coprocessor Initialization 17-22
17.20 CONTROL REGISTERS ..ttt 17-23
17.21 MEMORY MANAGEMENT FACILITIES. . ..ot 17-25
17.21.1 New Memory Management Control Flags. ... 17-25
17.21.1.1 Physical Memory Addressing EXtensioncc.ovvviiiiiiiiiiennnnnn, 17-25
17.21.1.2 GlIODAl PagES. v vttt 17-25
17.21.1.3 Larger Page Sizes. . ..ot i 17-25
17.21.2 CD and NW Cache Control FIagsovvvi e 17-26
17.21.3 Descriptor Types and CoONTENTSvviir e 17-26
17214 Changes in Segment Descriptor Loads.cvvviiiiiiiiii i 17-26
17.22 DEBUG FACILITIES. ..ttt e e 17-26
17.22.1 Differences in Debug Register DREc.viiiiiiiiiii e 17-26
17.22.2 Differences in Debug Register DR7 ...ttt 17-26
17.22.3 Debug Registers DR4 and DR5.cooiitii e 17-27
17.23 RECOGNITION OF BREAKPOINTS . ..ottt 17-27
17.24 EXCEPTIONS AND/OR EXCEPTION CONDITIONS ... oo vt e e 17-27
17.24.1 Machine-Check Architecturevv i e 17-29
17.24.2 Priority OF EXCEPLIONS ...\ttt e 17-29
17.25 INTERRUPT S, ..ttt e e e 17-29
17.25.1 Interrupt Propagation Delayooiiiiiiii e 17-30
17.25.2 N N =T) £ 17-30
17.25.3 10 3 17-30
17.26 ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER (APIC).......ovvvvvvnnnn 17-30
17.26.1 Software Visible Differences Between the Local APIC and the 82489DX.......... 17-30

17.26.2 New Features Incorporated in the Local APIC for the P6 Family and
PN IUM PrOCESSOTS . v vttt ettt ettt et e 17-31

17.26.3 New Features Incorporated in the Local APIC of the Pentium 4 and
INtel XEON PrOCESSOTS . vttt ettt et 17-32
17.27 TASK SWITCHING AND TS .. ittt 17-32
17.27.1 P6 Family and Pentium Processor TSS ... 17-32
17.27.2 TS SElECIOr WIS . vt e ettt e 17-32
17.27.3 Order of Reads/Writes to the TSS.o e 17-32
17.274 Using A 16-Bit TSS with 32-Bit Constructscoovvviiiiiiiiiii e 17-33
17.27.5 Differences in /0 Map Base AddresSesS.vvvv it iiiiiieiaannns 17-33
17.28 CACHE MANAGEMENT ..ottt e e 17-34
17.28.1 Self-Modifying Code with Cache Enabledcooiiiiiiiiiiiiii i 17-35
17.28.2 Disablingthe L3 Cache . ..ot e 17-35
T17.29 PAGING. .ottt e e e 17-36

Xvi Vol. 3A

CONTENTS

PAGE

17.29.1 LargE PagBS. . vttt e e 17-36
17.29.2 PCD and PWT Flags . .. oottt e e 17-36
17.29.3 Enabling and Disabling Paging 17-36
17.30 STACK OPERATIONSttt ettt e e 17-37
17.30.1 Selector Pushes and POPS. vvvii i 17-37
17.30.2 Error Code PUSHES. ... v 17-38
17.30.3 Fault Handling Effectsonthe Stackcooiiiiiii i e 17-38
17.304 Interlevel RET/IRET From a 16-Bit Interrupt or Call Gate.................oouent 17-38
17.31 MIXING 16- AND 32-BIT SEGMENTS . ..o\ttt 17-38
17.32 SEGMENT AND ADDRESS WRAPAROUND.\ttt 17-39
17.32.1 Segment WraparoUNd.oou it e 17-39
17.33 STORE BUFFERS AND MEMORY ORDERINGvvv v 17-40
17.34 BUSLOCKING . ..ttt ettt e et e e e e 17-41
17.35 BUSHOULD . ..ottt e 17-42
1736 MODEL-SPECIFIC EXTENSIONS TO THE IA-32 oot 17-42
17.36.1 Model-Specific RegISTerSot e 17-42
17.36.2 RDMSR and WRMSR INSTrUCTIONS ... vv vttt eeeas 17-43
17.36.3 Memory Type Range RegISterS.o i e eieaas 17-43
17364 Machine-Check Exception and Architecture ... 17-43
17.36.5 Performance-Monitoring COUNErs.ovvvi i 17-44
1737 TWO WAYS TORUN INTEL 286 PROCESSOR TASKS ...t vii et 17-44
CHAPTER 18
DEBUGGING AND PERFORMANCE MONITORING
18.1 OVERVIEW OF DEBUG SUPPORT FACILITIES. ..ot 18-1
18.2 DEBUG REGISTERS. .\ttt e e 18-2
18.2.1 Debug Address Registers (DRO-DR3)iviiii e 18-4
18.2.2 Debug Registers DR4and DRooiiiiiii s 18-4
1823 Debug Status Register (DRB).vvuit ittt 18-4
18.2.4 Debug Control ReGiSter (DR7)vvit ittt 18-5
18.2.5 Breakpoint Field Recognition.cc.vuiiiiii i e 18-6
18.2.6 Debug Registers and INtel® 64 ProCeSSOrS. ... ovvvrveeireieieeeiiierieeennn, 18-7
183 DEBUG EXCEPTIONS . .ttt et 18-8
18.3.1 Debug Exception (#DB)—Interrupt Vector 1.........ooviii i ieeees 18-9
18.3.1.1 Instruction-Breakpoint Exception Condition.................cooviviionnt, 18-10
183.1.2 Data Memory and I/0 Breakpoint Exception Conditions 18-11
183.1.3 General-Detect Exception Condition ...t 18-12
183.14 Single-Step Exception Condition. ..ot 18-12
18.3.1.5 Task-Switch Exception Condition..........cvviiiii s 18-12
18.3.2 Breakpoint Exception (#BP)—Interrupt Vector 3covvvviiiiiiiiininnn 18-13
184 LAST BRANCH RECORDING OVERVIEW. .. .ot 18-13
185 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™2

DUO PROCESSOR FAMILY) 4 ittt ettt ettt et eans 18-14
18.5.1 IA32_DEBUGCTLMSR. ..ttt 18-14
18.5.2 BTS and Related FaCilities.o vve e 18-16
18.5.2.1 Freezing LBR and Performance CountersonPMI...................coceeae 18-17
185.2.2 Debug Store (DS) MeChanism. . ..o vv vttt 18-17
186 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (PROCESSORS BASED

ON INTEL NETBURST® MICROARCHITECTURE)\t ee e e e e e 18-18
18.6.1 CPL-Qualified Last Branch Recording Mechanismcovvvvviviiinninnnn. 18-19
18.6.2 MSR_DEBUGCTLAMSR ..ttt 18-21
18.6.3 LBR STaCK vttt ettt 18-22

Vol. 3A xvii

CONTENTS

18.6.3.1 LBR Stack and INtel® 64 PrOCESSOISvvvvtee e ettt e e eeaiiiinaaeens,
18.6.4 Monitoring Branches, Exceptions, and Interrupts.ocoviviiiiii i
18.6.5 Single-Stepping on Branches, Exceptions, and Interrupts..................oouee,
18.6.6 Branch Trace MESSA0ES . ..o\ vv ittt ittt ettt
18.6.7 Last EXCEPLION RECOMAS ...\ttt e
18.6.7.1 Last Exception Records and Intel 64 Architecture ...t
186.8 Branch Trace Store (BTS). ... vvvvr ettt
18.6.8.1 Detection of the BTS Facilities.oovvvi i i
18.6.8.2 Setting Up the DS Save Area ... ov vttt ieieans
18.6.8.3 Setting Up the BTS BUffer. ..o e
18.6.84 Setting Up CPL-Qualified BTS. ... oot
18.6.8.5 Writing the DS Interrupt Service Routine..............coiiiiiiii it
18.7 LAST BRANCH, INTERRUPT, AND EXCEPTION RECORDING (INTEL® CORE™ SOLO

AND INTEL® CORE™ DUO PROCESSORS) .+t vttt eeeee e ee e eeieeaeaaeeaen
188 LAST BRANCH, INTERRUPT, AND EXCEPTIONRECORDING (PENTIUM M

PROCESSORS) ..ttt ettt et e
189 LAST BRANCH, INTERRUPT, AND EXCEPTIONRECORDING (P6 FAMILY

PROCESSORS) 4ttt ettt e e e
18.9.1 DEBUGCTULMSR REGISTEI. v vttt ettt ettt e
18.9.2 Last Branch and Last EXCeption MSRS. ... vt
189.3 Monitoring Branches, Exceptions, and Interrupts.cooviiiiiiii et
1810 TIME-STAMP COUNTER. ..ottt e ettt et
1811 PERFORMANCE MONITORING OVERVIEW\ 'ot et
1812 ARCHITECTURAL PERFORMANCE MONITORINGvv et
18.12.1 Architectural Performance Monitoring Version 1............ccooviiiiiiiinnn...
18.12.1.1 Architectural Performance Monitoring Version 1 Facilities....................
18122 Pre-defined Architectural Performance Eventscovvvviviiiiiinennnnn,
18.13 PERFORMANCE MONITORING (INTEL® CORE™ SOLO AND

INTEL® CORE™ DUO PROCESSORS) ...ttt
18.14 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL® CORE™

MICROARCHITECTURE) . vttt ettt e e e et e e e
18.14.1 Fixed-function Performance CoUNters.vvvvirviiiiiiiii e
18.14.2 Global Counter Control Facilitiescovrvii e
18.14.3 At-RetiremMENt BVENTS . ..ottt
18.14.4 Precise Even Based Sampling (PEBS)ovviiiiiiii i
18.14.4.1 Settingup the PEBS Buffer. ... e
18.14.4.2 Writing a PEBS Interrupt Service Routine.coiiiiiiiiiininnn,
1815 PERFORMANCE MONITORING (PROCESSORS BASED ON INTEL NETBURST

MICROARCHITECTURE) .+ vttt et ettt e e e e e e
18.15.1 ES R MRS ..ttt e
18.15.2 Performance CoUNTEMS .. .ttt e e
18.15.3 COOR MRS vttt ettt e e e e
18.15.4 Debug Store (DS) MeChanism vvie e e
18.15.5 DS AV AT . .ottt
18.15.5.1 DS Save Area and IA-32e Mode Operation.coovvviiiiiieennnnnn.
18.15.6 Programming the Performance Counters for Non-Retirement Events............
18.15.6.1 Selecting Events to COUNtov it
18.15.6.2 FIleriNg BVENTS. . oottt e e
18.15.6.3 Starting Event Counting. . ..o ov it e
18.15.6.4 Reading a Performance Counter's Countcoovviiviiiiiiiiiinnnnnnn,
18.15.6.5 Halting Event CoUNtiNg.vvvv e e eaens
18.15.6.6 CasCading COUNTES .o\ttt ettt et e e

Xviii Vol. 3A

CONTENTS

PAGE

18.15.6.7 EXTENDED CASCADING . . .o vee ettt et eaes 18-77
18.15.6.8 Generating an Interrupton Overflow 18-79
18.15.6.9 Counter Usage Guideling. ..ot e e 18-79
18.15.7 At-Retirement CouNtingovvuiii i e 18-80
18.15.7.1 Using At-Retirement Countingcovvuvriiniiii i 18-81
18.15.7.2 Tagging Mechanism for Front_end_event...............ccoovviiiiiiiennnn... 18-82
18.15.7.3 Tagging Mechanism For Execution_event...........cccoviviiiiiiiiiiennnn.n. 18-82
18.15.7.4 Tagging Mechanism for Replay_event ..., 18-83
18.15.8 Precise Event-Based Sampling (PEBS)ovvviiiiiiiii i 18-83
18.15.8.1 Detection of the Availability of the PEBS Facilities 18-84
18.15.8.2 Setting Up the DS Save Area. .. oot 18-84
18.15.8.3 SettingUp the PEBS Buffer........coviiiii e 18-84
18.15.84 Writing a PEBS Interrupt Service Routine ..., 18-84
18.158.5 Other DS Mechanism IMplications.ove i 18-85
18.15.9 Operating System Implications ... 18-85
18.16 PERFORMANCE MONITORING AND HYPER-THREADING TECHNOLOGY 18-85
18.16.1 ES R MO RS, . ittt sttt e 18-86
18.16.2 COOR MO RS . 1 ettt vttt et e et e e e e 18-87
18.16.3 IA32_PEBS_ENABLE MSR. ... i e 18-89
18.16.4 Performance Monitoring BVentS.oviiii e 18-89
1817 COUNTING CLOCKS .ottt ettt et e ettt e 18-91
18.17.1 Non-Halted ClocktickS. . ..o v e 18-92
18.17.2 NON-SIEeP CIOCKTICKS. . . v v v et 18-92
18.17.3 Incrementing the Time-Stamp CouNter..........ooviii i eeiaens 18-93
18174 Non-Halted Reference ClocktickSvvuvun i 18-93
18.18 PERFORMANCE MONITORING AND DUAL-CORE TECHNOLOGY.........covvvvvinnns 18-94
1819 PERFORMANCE MONITORING ON 64-BIT INTEL XEON PROCESSOR MP

WITHUP TO 8-MBYTEL3 CACHE ...ttt 18-94
1820 PERFORMANCE MONITORING (P6 FAMILY PROCESSOR)......vvvviiiiiieieians 18-99
18.20.1 PerfEvtSel0 and PerfEVtSelT MSRS. .. .vv i 18-99
18.20.2 PerfCtrO and PerfCtrT MSRS ...t 18-101
18.20.3 Starting and Stopping the Performance-Monitoring Counters 18-102
18.204 Event and Time-Stamp Monitoring Software................cocoiiiiinints. 18-102
18.20.5 Monitoring Counter OVerflowo.vuviiii i e 18-102
1821 PERFORMANCE MONITORING (PENTIUM PROCESSORS) ...t vveiii i 18-103
18.21.1 Control and Event Select Register (CESR)cvvviiiiiii i 18-104
18.21.2 Use of the Performance-Monitoring Pins. ..o, 18-105
18.21.3 EVENTS COUNTE .. ot e 18-106
CHAPTER 19
INTRODUCTION TO VIRTUAL-MACHINE EXTENSIONS
19.1 OV RV EW . .t e 19-1
19.2 VIRTUAL MACHINE ARCHITECTURE. .. .ottt 19-1
193 INTRODUCTION TO VMX OPERATION . . .ottt e aee s 19-1
194 LIFE CYCLE OF VMM SOFTWARE. . ..ttt e 19-2
195 VIRTUAL-MACHINE CONTROL STRUCTURE.ttt 19-3
19.6 DISCOVERING SUPPORT FOR VMX. . .ottt ettt 19-3
19.7 ENABLING AND ENTERING VMX OPERATION . ..ottt ie e 19-4
19.8 RESTRICTIONS ON VMX OPERATION. . ..ottt ne e 19-5

Vol. 3A Xix

CONTENTS

PAGE
CHAPTER 20
VIRTUAL-MACHINE CONTROL STRUCTURES
20.1 OV RV B . ittt 20-1
20.2 FORMAT OF THE VMCS REGION. . ..ottt 20-2
203 ORGANIZATION OF VMCS DAT A ittt e e 20-3
204 GUEST-STATE AREA i e s 20-3
20.4.1 GUEST REGISTET STate. vttt ettt e e e 20-3
204.2 Guest NON-Register Statevv it 20-6
20.5 HOST-STATE AREA i e s 20-8
20.6 VM-EXECUTION CONTROL FIELDS. . .\ttt e 20-9
20.6.1 Pin-Based VM-Execution CoNTrolS.c.vvvtir it ettt ieaaes 20-9
20.6.2 Processor-Based VM-Execution CoNtrolsvvvvriiiiiii i iiiiiie e 20-10
20.6.3 EXCEPTION BitMaD .. vttt e 20-11
20.6.4 1/0-Bitmap AdAreSSeSottt e 20-12
20.6.4.1 Time-Stamp Counter Offseto e 20-12
20.6.5 Guest/Host Masks and Read Shadows for CROandCR4coovvvivene 20-12
20.6.6 CR3-Target Controlsttt e 20-13
20.6.7 CONtrolS FOr CRB ACCESSES. v vt ittt vttt e et e ans 20-13
20.6.8 MSR-BItmap AdreSS. ...t ettt et e 20-13
20.6.9 EXeCUtiVe-VMCS POINTer. ..ot e e e e 20-14
20.7 VM-EXIT CONTROL FIELDS. . . .ttt e et e 20-14
20.7.1 M-BXIT CONTIOS . o v vt vttt ettt e et e 20-15
20.7.2 VM-EXit CONtrols fOr MSRS. ..\ttt e i e i e e 20-15
20.8 VM-ENTRY CONTROL FIELDS ..ttt ittt it 20-16
20.8.1 VM-ENTrY CONtrolS « oottt e e e 20-17
20.8.2 VM-Entry Controls for MSRS vui i 20-17
20.8.3 VVM-Entry Controls for Event Injection............ccooiiiiiiiiii i 20-18
209 VM-EXIT INFORMATION FIELDS . . .o oottt 20-19
20.9.1 Basic VM-EXit INformation . ..ot i e 20-19
209.2 Information for VM Exits Due to Vectored Events.oovvviiiiiiiiiiininns, 20-20
209.3 Information for VM Exits That Occur During Event Delivery 20-21
2094 Information for VM Exits Due to Instruction Execution...............covvvvnn.. 20-21
2095 VM-Instruction Brror Field ..o 20-23
2096 Software Access to the VMCS and Related Structuresovvvene 20-24
209.7 Software Access to the Virtual-Machine Control Structure 20-24
2098 VMREAD, VMWRITE, and Encodings of VMCS Fieldsccovviiian.. 20-25
2099 Software Access to Related STructuresoovvviii i i 20-27
209.10 VMXON REGION © vttt ettt ettt e et 20-27
20.10 USING VMCLEAR TOINITIALIZEAVMCSREGION ... oo vt 20-28
CHAPTER 21
VMX NON-ROOT OPERATION
21.1 INSTRUCTIONS THAT CAUSE VM EXITS L\ttt ettt ettt 21-1
21.1.1 Relative Priority of Faults and VM EXIitSt 21-1
21.1.2 Instructions That Cause VM Exits Unconditionally................cooiviiiiinnt 21-2
21.1.3 Instructions That Cause VM Exits Conditionally ...t 21-2
21.2 OTHER CAUSES OF VM EXI TS . ottt ettt it 21-5
21.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION 21-7
214 OTHER CHANGES IN VMX NON-ROOT OPERATION .. .o v e 21-10
21.4.1 EVENt BIOCKING. ..ot 21-10
214.2 Treatment of Task SWItChes.o s 21-11

XX Vol. 3A

CONTENTS

PAGE
CHAPTER 22
VM ENTRIES
22.1 BASIC VM-ENTRY CHECKS. . ottt ettt 22-2
22.2 CHECKS ON VMX CONTROLS AND HOST-STATE AREAo v 22-3
22.2.1 Checks on VMX CoNTrolS ... vv et 22-3
22.2.1.1 VM-Execution Control Fields ..o 22-3
22.2.1.2 VM-Exit Control Fieldsovir e 22-4
22.2.1.3 VM-Entry Control Fields. . ..o 22-5
22.2.2 Checks on Host Control Registersand MSRScccoiiiiiiiiiiiiiiieannss 22-6
22.2.3 Checks on Host Segment and Descriptor-Table Registers......................... 22-7
2224 Checks Related to Address-Space Size.ovvviiiiiii i 22-7
223 CHECKING AND LOADING GUEST STATE ..ttt 22-7
22.3.1 Checks on the GUest STate ArBa.vv vt 22-8
22.3.1.1 Checks on Guest Control Registers, Debug Registers,andMSRs................ 22-8
223.1.2 Checks on Guest Segment REGISTErS.vvivi i 22-9
223.1.3 Checks on Guest Descriptor-Table Registerscocvvvviiiivinnannn. 22-11
22314 Checks on GuestRIPand RFLAGS ... 22-11
22315 Checks on Guest Non-Register Statecoviiiiiiiiiiiiiiiieennss 22-12
22.3.1.6 Checks on Guest Page-Directory Pointers............cccoviviiiiiiiiiiennnn., 22-14
22.3.2 Loading GUEST STatettt 22-15
22.3.2.1 Loading Guest Control Registers, Debug Registers,andMSRs................ 22-15
223.2.2 Loading Guest Segment Registers and Descriptor-Table Registers 22-16
22323 Loading Guest RIP, RSP, and RFLAGSovi i 22-17
22324 Loading Page-Directory POINtersccovviiiiiiiiii i iciiieeenns 22-17
2233 Clearing Address-Range Monitoring.vvvv vt eaaas 22-17
224 LOADING MSRS . . ittt e e 22-18
22.5 EVENT INJECTION. .« ettt et e e e 22-18
22.5.1 Details of Event INjectionovviri i 22-19
22.5.2 VM Exits During Event Injectiono.vviiii 22-21
22.6 SPECIAL FEATURES OF VM ENTRY ..ttt 22-21
226.1 Interruptibility State.o e 22-22
22.6.2 ACHIVITY STt ..ttt 22-22
22.6.3 Delivery of Pending Debug Exceptions after VMENtry...................coet 22-23
2264 Interrupt-Window EXIitiNgovvriet i e 22-24
22.6.5 VM Entries and Advanced Debugging Features.oovviviiiiiiiiininnnn. 22-25
22.7 VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE........cvvvnen. 22-25
228 MACHINE CHECKS DURING VM ENTRY ..ottt 22-26
CHAPTER 23
VM EXITS
23.1 ARCHITECTURAL STATEBEFORE A VM EXIT .o\t 23-1
23.2 RECORDING VM-EXIT INFORMATION AND UPDATING CONTROLScvvivvievnn 23-4
23.2.1 Basic VM-EXit INformation.cvvii e 23-5
23.2.2 Information for VM Exits Due to Vectored Events...........covvviiiiinienninnns 23-9
23.2.3 Information for VM Exits During Event Deliveryccoviiiiiiiinninnns. 23-10
23.2.4 Information for VM Exits Due to Instruction Execution...............ccovvvivnns. 23-12
233 SAVING GUEST STATE .ttt e 23-13
23.3.1 Saving Control Registers, Debug Registers,and MSRscooovuet. 23-14
233.2 Saving Segment Registers and Descriptor-Table Registers...................... 23-14
2333 Saving RIP, RSP, @nd RFLAGS. . ..ot 23-15
2334 Saving Non-Register State.o 23-16
234 SAVING MO RS ot e 23-18

Vol. 3A xxi

CONTENTS

PAGE

235 LOADING HOST STATE ettt e 23-18
23.5.1 Loading Host Control Registers, Debug Registers, MSRs.covvvvivnns. 23-19
23.5.2 Loading Host Segment and Descriptor-Table Registers...................oovet 23-20
2353 Loading Host RIP, RSP, and RFLAGSo v e 23-21
2354 Checking and Loading Host Page-Directory Pointerscoovvvviininnnnn. 23-22
2355 Updating Non-Register State ... e e 23-22
23.5.6 Clearing Address-Range Monitoringovvvirvrii it eaas 23-23
236 LOADING MSRS ..ottt e e e 23-23
23.7 M AB O R T S . .ttt et 23-24
238 MACHINE CHECK DURING VM EXIT .\ttt 23-24
CHAPTER 24
SYSTEM MANAGEMENT
24.1 SYSTEM MANAGEMENT MODE OVERVIEWo v i 24-1
24.1.1 System Management Mode and VMX Operationccoooviiiiiinineninnns 24-2
24.2 SYSTEM MANAGEMENT INTERRUPT (SMI) .. i vt 24-2
24.3 SWITCHING BETWEEN SMM AND THE OTHER PROCESSOR OPERATING MODES....... 24-3
24.3.1 ENteriNg SMM . .. s 24-3
24.3.2 EXITING FrOmM SMM. ... e 24-4
24.4 S R A . L 24-5
24.4.1 SMRAM STate SaVe Map . .. e ittt 24-5
24411 SMRAM State Save Map and Intel 64 Architecture..................coovnntt. 24-8
24.4.2 SMRAM CaCNING. .+« v v ettt et e e e 24-10
24.5 SMI HANDLER EXECUTION ENVIRONMENT. ...\ttt eaaaas 24-12
24.6 EXCEPTIONS AND INTERRUPTS WITHINSMM.ot 24-13
24.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS SYSTEM MANAGEMENT

INTERRUP TS, ittt e e 24-15
24.7.1 1/0 State Implementation. ... 24-15
24.8 NMIHANDLING WHILEIN SMM .. .o 24-16
249 SAVING THE X87 FPU STATEWHILEINSMM ... oo 24-17
2410 SMMREVISION IDENTIFIER .. v ittt e 24-18
24017 AUTO HALT REST AR T .ttt e e 24-18
24111 Executing the HLT Instruction in SMM.o e 24-19
2412 SMBASE RELOCATION . ..ttt ettt e e e e e 24-20
24.12.1 Relocating SMRAM to an Address Above T MByte..........ovvvviiiiiiiiinnnns. 24-20
2413 1/OINSTRUCTION RESTART . .ttt ittt et e 24-21
24.13.1 Back-to-Back SMI Interrupts When I/0 Instruction Restart Is Being Used 24-22
2414 SMM MULTIPLE-PROCESSOR CONSIDERATIONS\ o et 24-22
2415 DEFAULT TREATMENT OF SMISAND SMMWITHVMX......oviiiiiiiiiiiiiein 24-23
24.15.1 Default Treatment of SMIDEliVErY.covii e 24-23
24.15.2 Default Treatment of RSM. .. .o e 24-24
24153 Protection of CRAVMXEIN SMM ... i i 24-24
2416 DUAL-MONITOR TREATMENT OF SMISAND SMM. ..o i 24-25
24.16.1 Dual-Monitor Treatment OVErVIEW. vvv e ettt 24-25
24.16.2 SMM VM EXITS .+ttt 24-25
24.16.2.1 Architectural State Before a VM EXit. ..o 24-26
24.16.2.2 Updating the Current-VMCS and Executive-VMCS Pointers................... 24-26
24.16.2.3 Recording VM-Exit Information ... 24-26
24.16.2.4 SaVINg GUEST STate. ..ot tii ea 24-28
24.16.2.5 Updating Non-Register Stateovvvviiii i 24-28
24.16.3 Operation of an SMM MONITOT. ov i 24-28
24.16.4 VM Entries that Return from SMMo 24-28

xXii Vol. 3A

CONTENTS

PAGE
24.16.4.1 Checks on the Executive-VMCS Pointer Field.covoviiiiiiii s 24-28
24.164.2 Checks on VM-Execution Control Fieldscooovviii i 24-29
24.164.3 Checks on Guest Non-Register State ... 24-29
24.16.4.4 Loading GUEST STaT . ..o\ i ittt e 24-29
24.164.5 Updating the Current-VMCS and SMM-Transfer VMCS Pointers............... 24-30
24.16.4.6 VMEXits Induced by VM ENtrY ..ot 24-30
24.164.7 SMIBIOCKING .+ vttt ettt e e 24-30
24.164.8 Failures of VM Entries That Return fromSMM..............ccoiviviinnnns. 24-31
24.16.5 Enabling the Dual-Monitor Treatment. ...t 24-31
24.16.6 Activating the Dual-Monitor Treatment.............cooiiiiiiiiiii i 24-33
24.16.6.1 INitial CRECKS . vt 24-33
24.166.2 MSEG CRECKING .+ vttt e e e e 24-34
24.16.6.3 Updating the Current-VMCS and Executive-VMCS Pointers................... 24-35
24.1664 Loading HOSt Stateot 24-35
24.166.5 LoadiNg MSRS ..ttt 24-37
24.16.7 Deactivating the Dual-Monitor Treatment.ovviiiii i 24-37
CHAPTER 25
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS
25.1 VMX SYSTEM PROGRAMMING OVERVIEWo 25-1
25.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS. 25-1
25.2.1 Emulating GUeSt EXECULION.ttt e 25-2
253 MANAGING VMCS REGIONS AND POINTERS ..o 25-2
254 USING VMX INSTRUCTIONS ..ottt e e 25-5
25.5 VMM SETUP & TEAR DOWN ..ottt et ettt 25-5
25.6 PREPARATION AND LAUNCHING A VIRTUALMACHINE. . ..o 25-6
25.7 HANDLING OF VM EXITS ittt e et 25-8
25.7.1 Handling VM Exits Due t0 EXCEPLIONSot 25-8
25.7.1.1 Reflecting Exceptions to Guest Software...........coviiiiiiiiiii i ennnns, 25-8
257.1.2 Resuming Guest Software after Handling an Exception...................... 25-10
258 MULTI-PROCESSOR CONSIDERATIONSottt 25-11
25.8.1 INItIAliZatioN e 25-12
25.8.2 Moving @ VMCS BEtWEEN PrOCESSOIS .\ vv vttt ii i ennanes 25-12
25.8.3 Paired Index-Data ReGISTErSoviiii it e 25-13
2584 External Data StrUCTUMES. . ..o v ettt 25-13
25.8.5 CPUID EMUIAtION. .\ ottt ettt 25-13
259 32-BIT AND 64-BIT GUEST ENVIRONMENTS ...\t 25-14
25.9.1 Operating Modes of Guest ENVIFONMENTScvvv vt eeineaas 25-14
25.9.2 Handling Widths of VMCS Fieldsoovvi i 25-15
25.9.2.1 Natural-Width VMCS Fields.o 25-15
25.9.2.2 B4-Bit VMCS Fields . ..ot 25-15
2593 JA-328 MOAE HOSTS . .\ttt ettt et e 25-15
2594 IA-320 MO GUESTS . . oottt et 25-16
25.9.5 3Bt GUESTS ettt 25-17
25.10 HANDLING MODEL SPECIFIC REGISTERS. ...ttt et 25-17
25.10.1 Using VM-Execution Controls.ovvuievi i eeaeas 25-17
25.10.2 Using VM-Exit Controls for MSRSvviiiii i 25-18
25.10.3 Using VM-Entry Controls for MSRS. 25-19
25.104 Handling Special-Case MSRs and Instructions.coiiiiiiiiiininnnn 25-19
25.104.1 Handling IA32_EFERMSR ot 25-19
25.104.2 Handling the SYSENTER and SYSEXIT Instructionscoovvvvnvnnnn, 25-19
25.104.3 Handling the SYSCALL and SYSRET Instructions.c.ovviiiiiiniinn, 25-20

Vol. 3A xxiii

CONTENTS

PAGE
25.104.4 Handling the SWAPGS Instruction.cooiiiiiiii i ieens 25-20
25.104.5 Implementation Specific Behavior on Writing to CertainMSRs 25-20
25.10.5 Handling Accesses to Reserved MSR Addressesoovvvviiiiiiiiiinnnnnnns, 25-21
2511 HANDLUING ACCESSES TO CONTROL REGISTERS. ...\ ovviiei i 25-21
25.12 PERFORMANCE CONSIDERATIONS ..\ttt 25-21
CHAPTER 26
VIRTUALIZATION OF SYSTEM RESOURCES
26.1 OV RV EW. ettt e e e e e e 26-1
26.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES oo 26-1
26.2.1 DEDUG EXCEPTIONS. . vttt ettt e e e s 26-2
26.3 MEMORY VIRTUALIZATION . ..ottt et e e e e 26-3
26.3.1 Processor Operating Modes & Memory Virtualization 26-3
26.3.2 Guest & Host Physical Address SPaces ovvvvii i i eienenens 26-3
2633 Virtualizing Virtual Memory by Brute Force. ..o 26-4
2634 Alternate Approach to Memory Virtualization....................ccocoiiiinnt 26-4
26.3.5 Details of Virtual TLB Operationvuvririiiiiii it ieiiieieanns 26-6
26.3.5.1 Initialization of Virtual TLBovi e 26-7
26.35.2 Response to Page Faultsv it e e 26-8
26.3.5.3 Response to Uses Of INVLPGot 26-11
26354 Response to CRI WIIteS. vve et 26-11
26.4 MICROCODE UPDATE FACILITY .ttt ettt et 26-11
26.4.1 Early Load of Microcode Updatesccovviiiiiiiiiiiii i 26-12
26.4.2 Late Load of Microcode Updates.ovvvieiiii e 26-12
CHAPTER 27
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR
27.1 OV RV EW. . ettt e e e 27-1
27.2 INTERRUPT HANDLING IN VMX OPERATIONttt 27-1
27.3 EXTERNAL INTERRUPT VIRTUALIZATION ...ttt 27-3
27.3.1 Virtualization of Interrupt Vector Space. ..o 27-3
27.3.2 Control of Platform INterruptsovii e e 27-5
27.3.2.1 PICVIrtualizationovriir e 27-6
27322 XAPIC Virtualization.o 27-6
27323 Local APIC Virtualization.o v e 27-6
27324 I/0 APIC Virtualization.o vt 27-7
27325 Virtualization of Message Signaled Interrupts ..., 27-8
2733 Examples of Handling of External Interrupts. ..o 27-8
27.3.3.1 GUBST S U ottt ettt e 27-9
27332 Processor Treatment of External Interrupt. ..., 27-9
27333 Processing of External Interruptsby VMM. ... 27-9
27334 Generation of Virtual Interrupt Eventsby VMM. ..., 27-10
27.4 ERROR HANDLING BY VMMottt et 27-11
27.4.1 VM-EXIT FIlUTES vt 27-11
27.4.2 Machine Check Considerationsovuveveiiii e 27-12
27.5 HANDLING ACTIVITY STATESBY VMM ..ot 27-13

XXiv Vol. 3A

CONTENTS

PAGE

APPENDIX A
PERFORMANCE-MONITORING EVENTS
Al ARCHITECTURAL PERFORMANCE-MONITORING EVENTS ... A-1
A2 PERFORMANCE MONITORING EVENTS FOR INTEL® XEON® PROCESSOR

5100 SERIES AND INTEL® CORE™ 2 DUO PROCESSORSvvvieeiiiieaniiiennn, A-2
A3 PERFORMANCE MONITORING EVENTS FOR INTEL® CORE™ SOLO AND

INTEL® CORE™ DUO PROCESSORS ...ttt et ea e A-46

A4 PENTIUM 4 AND INTEL XEON PROCESSOR PERFORMANCE-MONITORING EVENTS. ... A-56
A5 PERFORMANCE MONITORING EVENTS FOR INTEL® PENTIUM® M PROCESSORS. A-102

A6 P6 FAMILY PROCESSOR PERFORMANCE-MONITORING EVENTScovvivvnnn, A-105
A7 PENTIUM PROCESSOR PERFORMANCE-MONITORING EVENTS . ..o A-122
APPENDIX B
MODEL-SPECIFIC REGISTERS (MSRS)
B.1 MSRS IN THE INTEL® CORE™2 PROCESSOR FAMILY ...\vvvviiiiiiiiiiiiiins B-1
B.2 MSRS IN THE PENTIUM® 4 AND INTEL® XEON® PROCESSORSooevvvvinnet B-21
B.2.1 MSRs Unique to the 64-bit Intel Xeon Processor MP with Up to 8-MByte |
MB L3 CaCNE .ttt e B-64

B3 MSRS IN INTEL® CORE™ SOLO AND INTEL® CORE™ DUQ PROCESSORS................ B-65
B4 MSRS IN THE PENTIUM M PROCESSOR. .. .ottt B-81
B.S5 MSRS IN THE P6 FAMILY PROCESSORS ...ttt B-92
B.6 MSRS IN PENTIUM PROCESSORS ...ttt B-103
B.7 ARCHITECTURAL MSRS L.t e B-104
APPENDIX C
MP INITIALIZATION FOR P6 FAMILY PROCESSORS
C1 OVERVIEW OF THE MP INITIALIZATION PROCESS FOR P6 FAMILY PROCESSORS C-1
C2 MP INITIALIZATION PROTOCOL ALGORITHM ... C-2
C.2.1 Error Detection and Handling During the MP Initialization Protocol C4
APPENDIX D
PROGRAMMING THE LINTO AND LINT1 INPUTS
D.1 CON ST ANT S ottt e e e e e e D-1
D.2 LINT[O:1] PINS PROGRAMMING PROCEDURE\t D-1
APPENDIX E
INTERPRETING MACHINE-CHECK ERROR CODES
€1 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY 06H MACHINE

ERROR CODES FOR MACHINE CHECK.ttt E-1
€2 INCREMENTAL DECODING INFORMATION: PROCESSOR FAMILY OFH MACHINE

ERROR CODES FOR MACHINE CHECK. ...ttt e et eaas E-5
APPENDIX F
APIC BUS MESSAGE FORMATS
F.1 BUS MESSAGE FORMAT S, ittt ettt et ey F-1
F.2 B0 MES S AGE. ..ttt e F-1
F.2.1 Y 1o i =TS T F-2
F.2.2 Non-focused Lowest Priority Message.oovv it ici i F-3
F.2.3 APIC BUS STatus CYCIES .. v vttt F-5

Vol. 3A XXV

CONTENTS

PAGE
APPENDIX G
VMX CAPABILITY REPORTING FACILITY
G.1 BASIC VMX INFORMATION. . . vttt ettt et e G-1
G.2 VM-EXECUTION CONTROLS . . .ottt ettt et e et naans G-2
G3 VM-EXIT CONTROLS. . v ettt e e e et G-3
G4 VM-ENTRY CONTROLS ..ottt ettt et G-3
G5 MISCELLANEOUS DA T A, ittt e e e e G-3
G6 VMX-FIXED BITS IN CRO . ..ottt G-4
G.7 VMX-FIXED BITS IN CRA . ..ttt G-4
G8 VMCS ENUMERATION ..ottt et et et e e G-4
APPENDIX H
FIELD ENCODING IN VMCS
H.1 TB-BIT FIELDS ..ttt e e H-1
H.1.1 16-Bit Guest-State Fields.o v e H-1
H.1.2 16-Bit Host-State Fields.ot s H-2
H.2 BA-BIT FIELDS . ..ottt e H-2
H.2.1 64-Bit Control FIEldSo\ttt H-2
H.2.2 64-Bit Guest-State Fields.ovv v H-3
H.3 32-BIT FIELDS .ttt e e e H-4
H.3.1 32-Bit Control Fieldso e H-4
H.3.2 32-Bit Read-Only Data Fields ...t e H-5
H3.3 32-Bit Guest-State Fields.vve H-5
H3.4 32-Bit Host-State Field.oo v H-6
H.4 NATURAL-WIDTH FIELDS . . . oottt ettt H-6
H.4.1 Natural-Width Control Fields.ovei e H-7
H.4.2 Natural-Width Read-Only Data Fields. ... H-7
H.4.3 Natural-Width Guest-State Fieldsovvie i e H-8
H.4.4 Natural-Width Host-State Fields ..o e H-9
APPENDIX |
VMX BASIC EXIT REASONS
APPENDIX }
VM INSTRUCTION ERROR NUMBERS
J1 ERROR NUMBERS . .. oottt e e e J-1
FIGURES
Figure 1-1. Bit and Byte Order.ovi i 1-6
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation....................cooents. 1-9
Figure 2-1. IA-32 System-Level Registers and Data Structurescovviivinnnn.. 2-3
Figure 2-2. System-Level Registers and Data Structures inIA-32e Mode................... 2-4
Figure 2-3. Transitions Among the Processor’s OperatingModesooovvene. 2-11
Figure 2-4. System Flags in the EFLAGS Registeroviiiiiiiii it 2-13
Figure 2-5. Memory Management ReGISTErS vi it 2-16
Figure 2-6. CoNtrol REGISTEIS ottt e 2-19
Figure 3-1. Segmentation and Pagingcoviiirii i 3-2
Figure 3-2. FIBEMOGEL . . e e 3-4
Figure 3-3. Protected Flat Model. ... 3-4
Figure 3-4. Multi-Segment Model. 3-6
Figure 3-5. Logical Address to Linear Address Translation..............ovviiiiiiinnnnn.s 3-9

XXvi Vol. 3A

Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.

Figure 3-15.

Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.

Figure 3-21.

Figure 3-22.
Figure 3-23.

Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.

Figure 4-8.
Figure 4-9.

Figure 4-10.
Figure 4-11.
Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.

CONTENTS

PAGE
SEgMENT SIBCIOT . ittt 3-10
SEgMENT REGIS OIS . o\ttt 3-11
Segment DeSCri P Or ... e 3-13
Segment Descriptor When Segment-Present FlagisClear...................... 3-15
Global and Local Descriptor Tables.ovvvvii i e 3-20
Pseudo-Descriptor FOrmMatso.v ettt 3-21
Linear Address Translation (4-KByte Pages)c.covvviiviiiniiiniinnnenn, 3-26
Linear Address Translation (4-MByte Pages).........c..covviviiiiiiniinnnnn. 3-27
Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addressesvvvvivii it 3-29
Format of Page-Directory Entries for 4-MByte Pages and
32-Bit AGArESSES . v vttt ettt 3-30
Format of a Page-Table or Page-Directory Entry for a Not-Present Page 3-33
Register CR3 Format When the Physical Address Extension is Enabled.......... 3-34
Linear Address Translation With PAE Enabled (4-KByte Pages)................. 3-35
Linear Address Translation With PAE Enabled (2-MByte Pages) 3-36
Format of Page-Directory-Pointer-Table, Page-Directory, and
Page-Table Entries for 4-KByte Pages with PAE Enabled 3-38
Format of Page-Directory-Pointer-Table and Page-Directory Entries
for 2-MByte Pages with PAEEnabled. ... 3-39
Linear Address Translation (4-MByte Pages).........c.cvvvviiviiiniiiniinnnnnn, 3-41
Format of Page-Directory Entries for 4-MByte Pages and
36-Bit Physical Addressesooviiii e 3-42
IA-32e Mode Paging Structures (4-KByte Pages)........ccovvvvviiiiiniinnnann, 3-44
IA-32e Mode Paging Structures (2-MByte pages)........c.ovvvvvieriinninninnn. 3-45
Format of Paging Structure Entries for 4-KByte Pages in IA-32e Mode.......... 3-46
Format of Paging Structure Entries for 2-MByte Pages in IA-32e Mode......... 3-47
Memory Management Convention That Assigns a Page Table
T0Bach Segment 3-50
Descriptor Fields Used for Protection. ..o, 4-4
Descriptor Fields with Flags used inlA-32eModecoviiiiiiinnnnn. 4-6
Protection RiNGS ... vvvie e e 4-10
Privilege Check for Data ACCESS ... vvv ettt ieeas 4-12
Examples of Accessing Data Segments From Various Privilege Levels.......... 4-13
Privilege Check for Control Transfer Without UsingaGate..................... 4-16
Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels. ... 4-17
Call-Gate DeSCriPIOr . vttt e 4-19
Call-Gate Descriptor in 1A-32e Modeo v v i 4-21
Call-Gate MeChanism. v e 4-22
Privilege Check for Control Transfer with CallGate...................cooevee. 4-23
Example of Accessing Call Gates At Various Privilege Levels................... 4-25
Stack Switching During an Interprivilege-Level Call ..o, 4-27
MSRs Used by SYSCALL aNd SYSRETooiiiiii i 4-33
Use of RPL to Weaken Privilege Level of Called Procedure..................... 4-38
Relationship of the IDTR and IDTovriri e 5-13
IDT Gate DeSCriPIONS. ..ottt e e 5-15
Interrupt Procedure Call 5-16
Stack Usage on Transfers to Interrupt and Exception-Handling Routines 5-18
Interrupt Task Switch.o 5-21
] e[5-22
64-Bit IDT Gate DeSCriPIOrS . . vttt ettt e e 5-24

Vol. 3A xxvii

CONTENTS

Figure 5-8.
Figure 5-9.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 6-11.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.

Figure 8-1.
Figure 8-2.

Figure 8-3.

Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 8-14.
Figure 8-15.
Figure 8-16.

Figure 8-17.

Figure 8-18.
Figure 8-19.
Figure 8-20.
Figure 8-21.
Figure 8-22.
Figure 8-23.
Figure 8-24.
Figure 8-25.
Figure S-1.

Figure 9-2.

Figure 9-3.

Xxviii Vol. 3A

PAGE
IA-32e Mode Stack Usage After Privilege Level Change....................... 5-27
Page-Fault Error COde. ... v vttt e 5-55
SHrUCTUrE OF @ TaSK . vttt 6-2
32-Bit Task-State Segment (TSS)vvrii i e 6-5
BT D =Y 0] o 6-7
Format of TSS and LDT Descriptors in 64-bitModecccovvvvinnn.. 6-9
Task REGISTEr. . vttt 6-10
Task-Gate DeSCriPtOr. . vttt e 6-11
Task Gates Referencingthe Same Task ..o i 6-12
NESTEA TaSKS . . vttt ettt e 6-17
Overlapping Linear-to-Physical Mappings.o.vvviiiiiiiiiiiiiieaen s 6-20
T6-Bit TSS FOMMaT . o vttt e e 6-22
B4-Bit TSS FOrmatt e 6-24
Example of Write Ordering in Multiple-Processor Systems.................oov. 7-10
Interpretation of APICID in Early MP Systemsooiiiiiiiiiiiienann 7-23
Local APICs and I/0 APIC in MP System Supporting HT Technology............. 7-27
IA-32 Processor with Two Logical Processors Supporting HT Technology...... 7-28
Generalized Four level Interpretation of the initial APICID. 7-37
Topological Relationships between Hierarchical IDs in a Hypothetical
MP PIat O . et 7-38
Relationship of Local APIC and I/0 APIC In Single-Processor Systems............ 8-3
Local APICs and I/0 APIC When Intel Xeon Processors Are Used in
MUltiple-Processor SYSTEMSt 8-4
Local APICs and I/0 APIC When P6 Family Processors Are Used in
Multiple-Processor SYStemMS ... v i 8-4
LOCal APIC STTUCTUNE . ot e e 8-7
IA32_APIC_BASE MSR (APIC_BASE_MSR NP6 Family)coovvvvivnnnn, 8-11
LOCal APIC D REGISTEr . . vttt ettt e 8-12
Local APIC Version RegiStervv vt 8-15
Local Vector Table (LVT) .o vore e e 8-17
Error Status Register (ESR). ... vvvveiii i 8-21
Divide Configuration Register.c.vuiiiiii i 8-22
Initial Count and Current Count RegiSters.oviiiiiviviiii e, 8-22
Interrupt Command Register (ICR).ovvrviiii i 8-24
Logical Destination Register (LDR)ooiviiiiiiiiiiiii i 8-31
Destination Format Register (DFR).vvvvrvri i 8-31
Arbitration Priority Register (APR)vvrvi i 8-33
Interrupt Acceptance Flow Chart for the Local APIC (Pentium 4 and
INtel XEON ProCESSOTS) .\t e ittt e eaens 8-35
Interrupt Acceptance Flow Chart for the Local APIC (P6 Family and
Pentium PrOCESSOTS) . v v vttt 8-37
Task Priority Register (TPR) ... v vttt e 8-39
Processor Priority Register (PPR) ..o 8-40
IRR, ISR and TMR ReGISTErS.ttt e 8-41
EOI REGISTBr . vttt et e e 8-42
CRB REGIS BT vttt ettt e e 8-43
Spurious-Interrupt Vector Register (SVR) ..o 8-45
Layout of the MSI Message Address Register...........cccovvviviiiiiiiianann, 8-47
Layout of the MSI Message Data Register...........covvvviiiiiiiiniiininanns 8-48
Contents of CRO Register after Reset..........ccooviiiiiiiiiiiiiiii i 9-5
Version Information in the EDX Register after Reset..................ccovvet. 9-5
Processor State After Reset. ..o vv v 9-21

Figure 9-4.
Figure 9-5.

Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 9-9.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.

Figure 10-7.
Figure 11-1.
Figure 11-2.
Figure 12-1.

Figure 13-1.
Figure 13-2.
Figure 13-3.

Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 13-9.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.

Figure 15-5.
Figure 16-1.
Figure 17-1.
Figure 18-1.
Figure 18-2.
Figure 18-3.
Figure 18-4.
Figure 18-5.

Figure 18-6.

CONTENTS

PAGE
Constructing Temporary GDT and Switching to Protected Mode
(Lines 162-172 of LISTFilE) ... v vttt 9-31
Moving the GDT, IDT, and TSS from ROM to RAM (Lines 196-261 of
I o 1= 9-32
Task Switching (Lines 282-296 of List File)ovvvviiiiiiiiii i 9-33
Applying Microcode Updatesoovriiiiii i 9-37
Microcode Update Write Operation Flow [1].........coiiiiiiiiiiiiiiiannns 9-61
Microcode Update Write Operation Flow [2]........ovvvviiiii e 9-62
Cache Structure of the Pentium 4 and Intel Xeon Processors 10-1
Cache-Control Registers and Bits Available in IA-32 Processors 10-14
Mapping Physical Memory WithMTRRS ..o 10-29
IA32_MTRRCAP REGISTOr © vttt ettt 10-30
IA32_MTRR_DEF_TYPEMSR. ...\ttt 10-31
IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn
Variable-Range Register Pair............ovviiiii i 10-34
IA32_CR_PAT MSR ..ttt 10-45
Mapping of MMX Registers to Floating-Point Registerscoovvvue 11-2
Mapping of MMX Registers to x87 FPU Data Register Stack 11-7
Example of Saving the x87 FPU, MMX, SSE, SSE2, SSE3, and SSSE3
State During an Operating-System Controlled Task Switch................... 12-10
IA32_MPERF MSR and IA32_APERF MSR for P-state Coordination 13-2
Processor Modulation Through Stop-Clock Mechanism...................ooues 13-6
MSR_THERMZ_CTL Register On Processors with CPUID
Family/Model/Stepping Signature Encoded as 0x69n or Ox6Dn 13-8
MSR_THERM2_CTL Register for Supporting TM2.ovvviiiiiiii e 13-8
IA32_THERM_STATUS MSR. . ittt 13-9
IA32_THERM_INTERRUPT MSR ..\ttt i 13-10
IA32_CLOCK_MODULATION MSR . .ottt 13-10
IA32_THERM_STATUS REGISTOI . . vt v ittt it 13-13
IA32_THERM_INTERRUPT REGISTEN + .t vvviet e 13-14
Machine-Check MSRSt e 14-2
IA32_MCG_CAP REGISTT. vttt vttt i e 14-3
IA32_MCG_STATUS REGISTEI. 1t vttt ettt 14-4
LA i e T I I 2T (=T 14-5
IA32_MCi_STATUS REGISTON. vttt vttt ettt et aaas 14-6
IA32_MCi_ADDR MSR. . o ittt 14-10
Real-Address Mode Address Translation. ..o, 15-4
Interrupt Vector Table in Real-AddressModeccoviviviiiiiiiiinnnnn, 15-7
Entering and Leaving Virtual-8086 Modecccoviviiiiiiienn 15-13
Privilege Level O Stack After Interrupt or
Exception in Virtual-8086 Mode. v 15-19
Software Interrupt Redirection Bit Mapin TSS ..., 15-27
Stack after Far 16-and 32-Bit Callsc.vviiii e 16-6
1/0 Map Base Address Differences.cooovviiiiiii i 17-34
DEDUG REGISTErS. . v vttt ettt e 18-3
DR6/DR7 Layout on Processors Supporting Intel 64 Technology............... 18-8
IA32_DEBUGCTL MSR for Processors based on Intel Core microarchitecture.. 18-15
LBR MSR Layout for Processors Based on Intel Core Microarchitecture....... 18-16
MSR_LASTBRANCH_TOS MSR Layout for the Pentium 4 and
Intel Xeon Processor Family.ooviiini i i 18-21
MSR_DEBUGCTLA MSR for Pentium 4 and Intel Xeon Processors............. 18-22

Vol. 3A XXiX

CONTENTS

Figure 18-7.

Figure 18-8.
Figure 18-9.

Figure 18-10.
Figure 18-11.
Figure 18-12.
Figure 18-13.
Figure 18-14.
Figure 18-15.
Figure 18-16.
Figure 18-17.
Figure 18-18.

Figure 18-19.
Figure 18-20.
Figure 18-21.
Figure 18-22.
Figure 18-23.
Figure 18-24.
Figure 18-25.
Figure 18-26.
Figure 18-27.
Figure 18-28.

Figure 18-29.
Figure 18-30.
Figure 18-31.
Figure 18-32.
Figure 18-33.
Figure 18-34.
Figure 18-35.
Figure 18-36.

Figure 19-1.
Figure 19-2.
Figure 24-1.
Figure 24-2.
Figure 24-3.
Figure 24-4.
Figure 24-5.
Figure 25-1.
Figure 26-1.
Figure 27-1.
Figure C-1.

XXX Vol. 3A

PAGE
LBR MSR Branch Record Layout for the Pentium 4 and Intel Xeon
Processor Family. . ..vuv i 18-23
IA32_DEBUGCTL MSR for Intel Core Solo and Intel Core Duo Processors 18-31
LBR Branch Record Layout for the Intel Core Solo and
INtel COMe DUO PrOCESSOT . . vt vttt ettt e eaes 18-32
MSR_DEBUGCTLB MSR for Pentium M Processors.ovvvvvvivninenninnns 18-33
LBR Branch Record Layout for the Pentium M Processor..................... 18-34
DEBUGCTLMSR Register (P6 Family Processors)covvvvvvvivinininennn. 18-35
Layout of IA32_PERFEVTSELX MSRS. ...\ttt 18-42
Layout of MSR_PERF_FIXED_CTR_CTRLMSR.ovviiiii i 18-49
Layout of MSR_PERF_GLOBAL_CTRLMSR.ovviiiii i 18-50
Layout of MSR_PERF_GLOBAL_STATUSMSR. ..ot 18-51
Layout of MSR_PERF_GLOBAL_OVF_CTRLMSRcvviiiiiiiiiii s 18-51
Event Selection Control Register (ESCR) for Pentium 4 and
Intel Xeon Processors without HT Technology Support 18-60
Performance Counter (Pentium 4 and Intel Xeon Processors)................. 18-62
Counter Configuration Control Register (CCCR)ovvvvviiiiiiiiinnnn, 18-63
DS AV A . . ettt e 18-66
32-bit Branch Trace Record FOrmMat.ovuvrviriii i 18-67
PEBS ReCord FOrmMat. ..o vt ittt 18-68
IA-32e M0de DS SaVe Ar@a. . v 18-69
64-bit Branch Trace Record FOrmat.ovvviiiiiiiiiiii s 18-70
64-bit PEBS Record FOrmMat.ov vttt 18-70
Effects of Edge Filtering.ovviii i e 18-75
Event Selection Control Register (ESCR) for the Pentium 4 Processor,
Intel Xeon Processor and Intel Xeon Processor MP Supporting
Hyper-Threading Technology...........oviiiiiiiii i eeeas 18-86
Counter Configuration Control Register (CCCR)ovvvivinviiinninnnn. 18-88
Block Diagram of 64-bit Intel Xeon Processor MP with 8-MByte L3 18-94
MSR_IFSB_IBUSQx, Addresses: T07CCHand T07CDHovvvvvivniennn 18-95
MSR_IFSB_ISNPQx, Addresses: T07CEHand 107CFHoovvvinnt 18-96
MSR_EFSB_DRDYx, Addresses: 107D0OHand T07D1THcovvvunt 18-97
MSR_IFSB_CTL6, Address: 107D2H; MSR_IFSB_CNTR7, Address: 107D3H18-98
PerfEvtSel0 and PerfEVtSelT MSRSvv i 18-100
CESR MSR (Pentium Processor Only)v.vvvrviiiiiiiiiiiiene 18-104
Interaction of a Virtual-Machine Monitor and Guestscovvvivvinnnn. 19-3
CPUID Extended Feature Information ECX. ..o 19-4
SMRAM USEQE . ..ottt e e 24-6
SMM Revision Identifiervvvii i 24-18
Auto HALT Restart Fieldoe i 24-19
SMBASE Relocation Fieldcoovne e 24-20
I/0 Instruction Restart Fieldovvii i 24-21
VMX Transitions and States of VMCS in a Logical Processor................... 25-4
Virtual TLB SCheme . ..o e 26-7
Host External Interrupts and Guest Virtual Interrupts..............ccooinnn, 27-5
MP System With Multiple Pentium Il Processorscovvviviiiniiiiinnnnns C-3

TABLES
Table 2-1.

Table 2-2.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.

Table 4-5.
Table 4-6.

Table 4-7.
Table 4-8.
Table 4-9.

Table 4-10.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.
Table 5-7.
Table 5-8.
Table 6-1.
Table 6-2.

Table 7-1.

Table 7-2.

Table 8-1.
Table 8-2.
Table 8-3.

Table 8-4.

Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.

CONTENTS

PAGE
Action Taken By x87 FPU Instructions for Different Combinations of
EM, MP, and TS . i 2-21
Summary of System INStructions. ... 2-26
Code- and Data-Segment TYPeS . .. vv vttt ettt aens 3-17
System-Segment and Gate-Descriptor TYypescooviiviiiiiiiiiieinnns 3-19
Page Sizes and Physical Address Sizes...........cooviiiiii it 3-25
Reserved Bit Checking When Execute Disable Bit is Disabled................... 3-48
Reserved Bit Checking When Execute Disable Bitis Enabled 3-49
Privilege Check Rules for Call Gates.oovviiiiii it 4-23
64-Bit-Mode Stack Layout After CALLF withCPLChange................cooue 4-28
Combined Page-Directory and Page-Table Protection.......................... 4-42
Page Sizes and Physical Address Sizes Supported by Execute-Disable
Bit Capabilityot e 4-43
Extended Feature Enable MSR (IA32_EFER)..........c.ocoviiiiii i, 4-44
IA-32e Mode Page Level Protection Matrix with Execute-Disable
Bit CapPabiliTy . ..o vt e 4-44
Legacy PAE-Enabled 4-KByte Page Level Protection Matrix with
Execute-Disable Bit Capability..........c.cooiii i e 4-45
Legacy PAE-Enabled 2-MByte Page Level Protection with Execute-Disable
Bit Capability . ..o\t e 4-45
IA-32e Mode Page Level Protection Matrix with Execute-Disable
Bit Capability Enabled.cooiiii i 4-46
Reserved Bit Checking WIth Execute-Disable Bit Capability Not Enabled 4-47
Protected-Mode Exceptions and Interruptscovviiiiiiiiiiiienanann 5-3
Priority Among Simultaneous Exceptions and Interrupts....................... 5-11
Debug Exception Conditions and Corresponding Exception Classes 5-30
Interrupt and EXception ClassesS vv i 5-39
Conditions for GeneratingaDouble Fault ...t 5-40
INvalid TSS ConditionsSvve e e 5-43
Alignment Requirements by Data Typeovvviiiiiii e 5-60
SIMD Floating-Point Exceptions Priority.c.covveiiiiiiii s 5-65
Exception Conditions Checked During a Task Switchccovivnnnt, 6-15
Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,
ANA TS Flag . oo 6-17
Initial APIC IDs for the Logical Processors in a System that has
Four Intel Xeon MP Processors Supporting Hyper-Threading Technology........ 7-38
Initial APIC IDs for the Logical Processors in a System that has
Two Physical Processors Supporting Dual-Core and Hyper-Threading
TECNNOIOGY . vttt 7-39
Local APIC Register AddresS Map. ... v veiiiii e 8-8
SR IS .« v vt ettt e 8-20
Valid Combinations for the Pentium 4 and Intel Xeon Processors’
Local XAPIC Interrupt Command Registercoovviiiiiiiiiiieenn, 8-27
Valid Combinations for the P6 Family Processors’
Local APIC Interrupt Command Registercoviiiiiiiiiiiiiii e, 8-28
IA-32 Processor States Following Power-up, Reset, or INIT 9-3
Recommended Settings of EM and MP Flags on IA-32 Processors 9-7
Software Emulation Settings of EM, MP,and NEFlags 9-8
Main Initialization Steps in STARTUP.ASM Source Listingcovvenes. 9-21
Relationship Between BLD Item and ASM SourceFile. ...t 9-36

Vol. 3A XXXi

CONTENTS

Table 9-6.

Table 9-7.

Table 9-8.

Table 9-9.

Table 9-10.
Table 9-11.
Table 9-12.
Table 9-13.
Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 10-1.

Table 10-2.
Table 10-3.

Table 10-4.
Table 10-5.
Table 10-6.

Table 10-7.

Table 10-8.
Table 10-9.
Table 10-11.
Table 10-10.
Table 10-12.
Table 11-1.

Table 11-2.
Table 11-3.

Table 12-1.

Table 12-2.
Table 13-1.
Table 14-1.

Table 14-2.
Table 14-3.

Table 14-4.

Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.
Table 14-10.
Table 15-1.

XXxii Vol. 3A

PAGE
Microcode Update Field Definitions.t 9-38
Microcode Update FOrmatovvrii e 9-40
Extended Processor Signature Table Header Structureoooout 9-41
Processor Signature STrUCTUMe.ottt 9-41
PrOCESSOr Flags. . oo vt 943
Microcode Update Signature. ... e 9-49
Microcode Update FUNCHIONS.ove it eeeaas 9-56
Parameters for the Presence Test. . ..o 9-57
Parameters for the Write Update Data Function......................o.eeae 9-58
Parameters for the Control Update Sub-function 9-63
MNEMONIC ValUBS . ..ot e e 9-64
Parameters for the Read Microcode Update Data Function.................... 9-64
Return Code Definitionsovvvuv i 9-66
Characteristics of the Caches, TLBs, Store Buffer, and Write Combining
Buffer in Intel 64 and 1A-32 ProCessorsvvvvvvin ittt i, 10-2
Memory Types and Their Properties ..o iiiiiianns 10-7
Methods of Caching Available in Intel Core 2 Duo, Intel Core Duo,
Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors......... 10-8
MESI Cache Line States. ..o v vttt 10-12
Cache OperatingModeso.irii e 10-15
Effective Page-Level Memory Type for Pentium Pro and Pentium Il
0 Tol Yo 10-19
Effective Page-Level Memory Types for Pentium Ill and More Recent
ProCesSSOr FaMIlIES . . vttt ettt e 10-20
Memory Types That Can Be Encoded inMTRRScovviiiiiiiininnnnn. 10-28
Address Mapping for Fixed-Range MTRRScovviiiii i 10-32
Selection of PAT Entries with PAT, PCD,and PWT Flags...................... 10-46
Memory Types That Can Be Encoded WithPAT ..., 10-46
Memory Type Setting of PAT Entries Following a Power-up or Reset 10-47
Action Taken By MMX Instructions for Different Combinations of
EM, M and TS . e 11-1
Effects of MMX Instructionson x87 FPUStatecovviiivivinininnnn 11-3
Effect of the MMX, x87 FPU, and FXSAVE/FXRSTOR Instructions
onthe x87 FPU Tag Word.oviiii et 11-4
Action Taken for Combinations of OSFXSR, 0SXMMEXCPT, SSE, SSEZ2,
SSE3 EM, MP, and TST oottt 12-3
Action Taken for Combinations of OSFXSR, SSSE3, EM,and TS 12-4
On-Demand Clock Modulation Duty Cycle Field Encoding...................... 13-11
Bits 54:53 in IA32_MCi_STATUS MSRs when IA32_MCG_CAP[11] =1
ANAUC = 0 ottt e 14-7
Overwrite Rules for Enabled Errors 14-9
Extended Machine Check State MSRs in Processors Without Support for
INtel 64 ArChiteCtUNE. ..ottt 14-10
Extended Machine Check State MSRs In Processors With Support For
INtel 64 ArChiteCTUNE. .\ttt e 14-11
IA32_MCi_Status [15:0] Simple Error Code Encoding.........ocvvvvvnvnnnnn, 14-17
IA32_MCi_Status [15:0] Compound Error Code Encoding.......ovvvvvvvnnnnn. 14-17
Encoding for TT (Transaction Type) Sub-Fieldc.ocoviiiinnns, 14-18
Level Encoding for LL (Memory Hierarchy Level) Sub-Field 14-19
Encoding of Request (RRRR) Sub-Field ..., 14-19
Encodings of PP, T,and lISub-Fields ... 14-20
Real-Address Mode Exceptions and Interruptscovviiviiiniinann 15-8

Table 15-2.
Table 16-1.
Table 17-1.
Table 17-2.

Table 17-3.
Table 18-1.
Table 18-2.
Table 18-3.

Table 18-4.
Table 18-5.
Table 18-6.

Table 18-7.
Table 18-8.
Table 18-9

Table 18-10.
Table 18-12.
Table 18-11.
Table 18-13.

Table 18-14.
Table 18-15.
Table 18-16.
Table 18-17.

Table 18-18.
Table 18-19.
Table 18-20.

Table 18-21.

Table 20-1.
Table 20-2.
Table 20-3.
Table 20-4.
Table 20-5.
Table 20-6.
Table 20-7.
Table 20-8.
Table 20-9

Table 20-10.
Table 20-11.
Table 20-12.
Table 20-13.
Table 20-14.
Table 20-15.

Table 23-1.
Table 23-2.
Table 23-3.
Table 23-4.

CONTENTS

PAGE
Software Interrupt Handling Methods While in Virtual-8086 Mode 15-26
Characteristics of 16-Bit and 32-Bit Program Modules......................... 16-1
New Instruction in the Pentium Processor and Later IA-32 Processors 17-5
Recommended Values of the EM, MP, and NE Flags for Intel486 SX
Microprocessor/Intel 487 SX Math Coprocessor Systemcovvunns. 17-22
EMand MP Flag Interpretationccoviri i e 17-22
Breakpoint EXampleso.ovi 18-7
Debug Exception Conditions.vvvire e 18-9
LBR MSR Stack Structure for the Pentium® 4 and the
INtel® Xeon® Processor Familyvveeeeee et 18-19
MSR_DEBUGCTLA, IA32_DEBUGCTL, MSR_DEBUGCLTB Flag Encodings....... 18-28
CPL-Qualified Branch Trace Store ENcodingsovvvvvvviiiiiieiiiiinnns 18-29
UMask and Event Select Encodings for Pre-Defined Architectural
Performance BVentS.ot e 18-43
Core Specificity Encoding within a Non-Architectural Umask 18-46
Agent Specificity Encoding within a Non-Architectural Umask................ 18-46
HW Prefetch Qualification Encoding within a Non-Architectural Umask 18-46
MESI Qualification Definitions within a Non-Architectural Umask 18-47
Snoop Type Qualification Definitions within @ Non-Architectural Umask 18-48
Bus Snoop Qualification Definitions within a Non-Architectural Umask........ 18-48
Association of Fixed-Function Performance Counters with Architectural
Performance BVeNTS. ...ttt 18-49
At-Retirement Performance Events for Intel Core Microarchitecture 18-52
PEBS Performance Events for Intel Core Microarchitecture 18-52
Requirements to Program PEBS. ...t 18-54
Performance Counter MSRs and Associated CCCR and ESCR MSRs
(Pentium 4 and Intel Xeon ProCESSOrS) «.vvvvvr vttt eineiieiannes 18-56
BVeNT EXAMPIE . ..o 18-71
CCR Names and Bit POSItIONS.ovvvie i 18-77
Effect of Logical Processor and CPL Qualification for Logical-
Processor-Specific (TS) EVENTS vt vt 18-90
Effect of Logical Processor and CPL Qualification for Non-logical-
Processor-specific (T1) EVENTS . ..o vt vt 18-90
Format of the VMCS REGION.v vt 20-2
Format of ACCesS RIghTS.ovvie 20-4
Format of Interruptibility State. ... 20-6
Format of Pending-Debug-EXceptionscoviiii i 20-8
Definitions of Pin-Based VM-Execution Controls..............ovovviiiiinnnnn, 20-9
Definitions of Processor-Based VM-Execution Controlscocvvvvnss 20-10
Definitions of VM-EXit CONtrolS.vvvveii i 20-15
Format of anMSR ENtrYo 20-16
Definitions of VM-Entry CoNtrolsc.oviiiiii i ciieeeees 20-17
Format of the VM-Entry Interruption-Information Field...................... 20-18
Format of EXIt REASON. .. vttt 20-19
Format of the VM-Exit Interruption-Information Field........................ 20-20
Format of the IDT-Vectoring Information Field.............................. 20-21
Format of the VMX-Instruction Information Field............................ 20-22
Structure of VMCS Component Encoding.........covvviiviiiii i, 20-25
Exit Qualification for Debug EXCeptions.covvviiiiiii i 23-5
Exit Qualification for Task SWItch ... e 23-6
Exit Qualification for Control-Register ACCESSES. .. vvvvr v iivii i, 23-7
Exit Qualification for MOV DR ... 23-8

Vol. 3A xxxiii

CONTENTS

Table 24-1.

Table 24-1.
Table 25-1.
Table A-1.
Table A-2.
Table A-3.

Table A-4.
Table A-5.
Table A-6.
Table A-7.

Table A-9.

Table A-8.

Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.

Table A-15.

Table B-1.
Table B-2.
Table B-3.

Table B-4.

Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table C-1.
Table E-1.

Table E-2.
Table E-3.

Table F-1.
Table F-2.

XXXiv Vol. 3A

PAGE
Exit Qualification for /0 INStrUCtioNs. ..o v 23-8
SMRAM STate SAVE Map .. ottt 24-6
ISMRAM State Save Map for Intel 64 Architecturecovviininn... 24-8
Processor Register Initializationin SMM 24-12
I/0 Instruction Information in the SMM State SaveMapcvovvnne 24-15
I/0 Instruction Type ENCOdings vvviii i e 24-16
Auto HALT Restart Flag Values.ovi i 24-19
I/0 Instruction Restart Field Values ..o 24-21
Exit Qualification for SMIs That Arrive Immediately After the
Retirement of an I/0 INSTructiono v 24-27
Format of MSEG Header.ov v e 24-32
Operating Modes for Host and Guest Environments.............c..coovvvnen... 25-14
Architectural Performance EVENtSovvii i A-2
Fixed-Function Performance Counter and Pre-defined Performance Events..... A-3
Non-Architectural Performance Events in Processors Based on
Intel Core MicroarChitectureot e A-4
Non-Architectural Performance Events in Intel Core Solo and
INtel Core DUO ProCESSOIS . .o\ v vttt ens A-46
Performance Monitoring Events Supported by Intel NetBurst
Microarchitecture for Non-Retirement Countingcooovvvivvninnns, A-56
Performance Monitoring Events For Intel NetBurst Microarchitecture
for At-Retirement CouNtingovvviviiii i e A-86
Intel NetBurst Microarchitecture Model-Specific Performance Monitoring
Events (For Model ENcoding 3,4 07 6) ... vvvvv vt A-93

List of Metrics Available for Execution Tagging (For Execution Event Only)... .. A-94
List of Metrics Available for Front_end Tagging (For Front_end Event Only)....A-94

List of Metrics Available for Replay Tagging (For Replay Event Only)........... A-95
Event Mask Qualification for Logical Processorsc.coovvvvivvinenninnns. A-97
Performance Monitoring Events on Intel® Pentium® M Processors. A-103

Performance Monitoring Events Modified on Intel® Pentium® M Processors . .A-104
Events That Can Be Counted with the P6 Family Performance-

MONITOMING COUNTEIS &\ttt et eaees A-106
Events That Can Be Counted with Pentium Processor

Performance-Monitoring CoUNTerscovv v iii it iei e A-123
MSRs in Processors Based on Intel Core Microarchitecture B-1
MSRs in the Pentium 4 and Intel Xeon Processorscoovvivivininenanns B-21
MSRs Unique to 64-bit Intel Xeon Processor MP with Up to an

BMB L3 CaCNE. .ottt e e B-64
MSRs in Intel Core Solo, Intel Core Duo Processors, and Dual-core Intel

XEON ProCessor LV . o e B-65
MSRS in Pentium M ProceSSOrS .. vvvvvti it B-82
MSRs in the P6 Family Processorsvv vt iciciciieeaenns B-92
MSRs in the Pentium Processor. . .. o.v vt B-103
IA-32 Architectural MSRS.ttt B-104
Boot Phase IPIMessage FOrmato.oiiii it i i i ieaaes C-2
Incremental Decoding Information; Processor Family 06H Machine Error

Codes For Machine Check. . ..vvvv i e E-1
Incremental Decoding Information; Processor Family OFH Machine Error

Codes For Machine Check.ovvi i e €-5
Decoding Family OFH Machine Check Codes for Memory Hierarchy Errors E-7
EOIMESSage (T4 CYClS). o v vttt aeas F-1
Short Message (21 CYCIES) . v et F-2

Table F-3.
Table F-4.
Table G-1.
Table H-1.
Table H-2.
Table H-3.
Table H-4.
Table H-5.
Table H-6.
Table H-7.
Table H-8.
Table H-9.
Table H-10.

Table H-11.
Table H-12.
Table I-1.
Table J-1.

CONTENTS

PAGE
Non-Focused Lowest Priority Message (34 Cycles)ovvvvviiiiniinnninnns F-3
APIC Bus Status Cycles Interpretation ... F-5
Memory Types Used FOr VMCS ACCESS. ..o vvvvii ittt G-2
Encodings for 16-Bit Guest-State Fields (0000_10xX_XXXX_xxX0B) H-1
Encodings for 16-Bit Host-State Fields (0000_1TXX_XXXX_XXX0B) H-2
Encodings for 64-Bit Control Fields (0010_00XX_XXXX_XXXAD)........ccvvvvvnt H-2
Encodings for 64-Bit Guest-State Fields (0010_10XX_XXXX_XXXAb) H-3
Encodings for 32-Bit Control Fields (0100_00XX_XXXX_XXXOB)................. H-4
Encodings for 32-Bit Read-Only Data Fields (0100_01xx_xxxX_xxx0B)......... H-5
Encodings for 32-Bit Guest-State Fields (0100_10xX_XXXX_xxx0B) H-5
Encodings for 32-Bit Host-State Field (0100_11xx_xxxX_xxx0B) H-6
Encodings for Natural-Width Control Fields (0110_00xx_xxxx_xxx0B).......... H-7
Encodings for Natural-Width Read-Only Data Fields
(OTTO_OTXX_XXXX_XXXOB) v v ettt e H-7

Encodings for Natural-Width Guest-State Fields (0110_10xx_xxxx_xxx0B)..... H-8
Encodings for Natural-Width Host-State Fields (0110_1Txx_xxxx_xxx0B)...... H-9
BasiC EXIt REASONS ...ttt e I-1
VM-Instruction Error NUMDETS.ot i e J-1

Vol. 3A XXXV

CONTENTS

PAGE

XXXVi Vol. 3A

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide, Part 1 (order number 253668) and the Intel® 64 and
I1A-32 Architectures Software Developer’s Manual, Volume 3B: System Programming
Guide, Part 2 (order number 253669) are part of a set that describes the architecture
and programming environment of all Intel 64 and IA-32 Architecture processors. The
other volumes in this set are:

® Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1: Basic
Architecture (order number 253665).

® Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
2A & 2B: Instruction Set Reference (order numbers 253666 and 253667).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and 1A-32
processors. The Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and I1A-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of 1A-32 and Intel 64 processors. These volumes target operating-
system and BIOS designers. In addition, Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel®
64 and 1A-32 processors, which include:

* pentium® processors

® P6 family processors

* pentium® 4 processors

* Ppentium® M processors

* Intel® Xeon® processors

® PpPentium® D processors

* pentium® processor Extreme Editions
® 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

Vol.3A 1-1

ABOUT THIS MANUAL

® Dual-Core Intel® Xeon® processor LV
® Intel® Core™2 Duo processor
* Intel® Xeon® processor 5100 series

P6 family processors are 1A-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® 11, Pentium® IIl, and Pentium® Ill Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture. The Intel®
Xeon® processor 5100 series, Intel® Core™2 Duo, and Intel® Core™2 Extreme
processors are based on Intel® Core™ microarchitecture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support 1A-32 architecture.

The Intel® Xeon® processor 5100 series, Intel® Core™2 Duo, Intel® Core™2
Extreme processors, newer generations of Pentium 4 and Intel Xeon processor family
support Intel® 64 architecture.

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors. Intel® 64 architecture is the instruction set archi-
tecture and programming environment which is a superset of and compatible with
I1A-32 architecture.

1.2 OVERVIEW OF THE SYSTEM PROGRAMMING GUIDE

A description of this manual’s content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and 1A-32 Architectures Software Developer’s Manual. It also describes
the notational conventions in these manuals and lists related Intel manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — System Architecture Overview. Describes the modes of operation
used by Intel 64 and 1A-32 processors and the mechanisms provided by the architec-
tures to support operating systems and executives, including the system-oriented
registers and data structures and the system-oriented instructions. The steps neces-
sary for switching between real-address and protected modes are also identified.

Chapter 3 — Protected-Mode Memory Management. Describes the data struc-
tures, registers, and instructions that support segmentation and paging. The chapter
explains how they can be used to implement a “flat” (unsegmented) memory model
or a segmented memory model.

1-2 Vol. 3A

ABOUT THIS MANUAL

Chapter 4 — Protection. Describes the support for page and segment protection
provided in the Intel 64 and 1A-32 architectures. This chapter also explains the
implementation of privilege rules, stack switching, pointer validation, user and
supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt
mechanisms defined in the Intel 64 and 1A-32 architectures, shows how interrupts
and exceptions relate to protection, and describes how the architecture handles each
exception type. Reference information for each exception is given at the end of this
chapter.

Chapter 6 — Task Management. Describes mechanisms the 1A-32 architecture
provides to support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management. Describes the instructions and
flags that support multiple processors with shared memory, memory ordering, and
Hyper-Threading Technology.

Chapter 8 — Advanced Programmable Interrupt Controller (APIC). Describes
the programming interface to the local APIC and gives an overview of the interface
between the local APIC and the 1/0 APIC.

Chapter 9 — Processor Management and Initialization. Defines the state of an
Intel 64 or 1A-32 processor after reset initialization. This chapter also explains how to
set up an Intel 64 or 1A-32 processor for real-address mode operation and protected-
mode operation, and how to switch between modes.

Chapter 10 — Memory Cache Control. Describes the general concept of caching
and the caching mechanisms supported by the Intel 64 or 1A-32 architectures. This
chapter also describes the memory type range registers (MTRRs) and how they can
be used to map memory types of physical memory. Information on using the new
cache control and memory streaming instructions introduced with the Pentium llI,
Pentium 4, and Intel Xeon processors is also given.

Chapter 11 — Intel® MMX™ Technology System Programming. Describes
those aspects of the Intel® MMX™ technology that must be handled and considered
at the system programming level, including: task switching, exception handling, and
compatibility with existing system environments.

Chapter 12 — System Programming for Streaming SIMD Instruction Sets.
Describes those aspects of SSE/SSE2/SSE3 extensions that must be handled and
considered at the system programming level, including task switching, exception

handling, and compatibility with existing system environments.

Chapter 13 — Power and Thermal Management. Describes the architecture’s
power and the thermal monitoring facilities.

Chapter 14 — Machine-Check Architecture. Describes the machine-check archi-
tecture.

Chapter 15 — 8086 Emulation. Describes the real-address and virtual-8086
modes of the 1A-32 architecture.

Vol.3A 1-3

ABOUT THIS MANUAL

Chapter 16 — Mixing 16-Bit and 32-Bit Code. Describes how to mix 16-bit and
32-bit code modules within the same program or task.

Chapter 17 — 1A-32 Architecture Compatibility. Describes architectural
compatibility among 1A-32 processors.

Chapter 18 — Debugging and Performance Monitoring. Describes the debug-
ging registers and other debug mechanism provided in Intel 64 or 1A-32 processors.
This chapter also describes the time-stamp counter and the performance-monitoring
counters.

Chapter 19 — Introduction to Virtual-Machine Extensions. Describes the basic
elements of virtual machine architecture and the virtual-machine extensions for
Intel 64 and I1A-32 Architectures.

Chapter 20 — Virtual-Machine Control Structures. Describes components that
manage VMX operation. These include the working-VMCS pointer and the control-
ling-VMCS pointer.

Chapter 21— VMX Non-Root Operation. Describes the operation of a VMX non-
root operation. Processor operation in VMX non-root mode can be restricted
programmatically such that certain operations, events or conditions can cause the
processor to transfer control from the guest (running in VMX non-root mode) to the
monitor software (running in VMX root mode).

Chapter 22 — VM Entries. Describes VM entries. VM entry transitions the processor
from the VMM running in VMX root-mode to a VM running in VMX non-root mode.
VM-Entry is performed by the execution of VMLAUNCH or VMRESUME instructions.

Chapter 23 — VM Exits. Describes VM exits. Certain events, operations or situa-
tions while the processor is in VMX non-root operation may cause VM-exit transitions.
In addition, VM exits can also occur on failed VM entries.

Chapter 24 — System Management. Describes Intel 64 and 1A-32 architectures’
system management mode (SMM) facilities.

Chapter 25 — Virtual-Machine Monitoring Programming Considerations.
Describes programming considerations for VMMs. VMMs manage virtual machines
(VMs).

Chapter 26 — Virtualization of System Resources. Describes the virtualization
of the system resources. These include: debugging facilities, address translation,
physical memory, and microcode update facilities.

Chapter 27 — Handling Boundary Conditions in a Virtual Machine Monitor.
Describes what a VMM must consider when handling exceptions, interrupts, error
conditions, and transitions between activity states.

Appendix A — Performance-Monitoring Events. Lists the events that can be
counted with the performance-monitoring counters and the codes used to select
these events. Both Pentium processor and P6 family processor events are described.

Appendix B — Model-Specific Registers (MSRs). Lists the MSRs available in the
Pentium processors, the P6 family processors, the Pentium 4, Intel Xeon, Intel Core

1-4 Vol. 3A

ABOUT THIS MANUAL

Solo, Intel Core Duo processors, and Intel Core 2 processor family and describes
their functions.

Appendix C — MP Initialization For P6 Family Processors. Gives an example of
how to use of the MP protocol to boot P6 family processors in n MP system.

Appendix D — Programming the LINTO and LINT1 Inputs. Gives an example of
how to program the LINTO and LINT1 pins for specific interrupt vectors.

Appendix E — Interpreting Machine-Check Error Codes. Gives an example of
how to interpret the error codes for a machine-check error that occurred on a P6
family processor.

Appendix F — APIC Bus Message Formats. Describes the message formats for
messages transmitted on the APIC bus for P6 family and Pentium processors.

Appendix G — VMX Capability Reporting Facility. Describes the VMX capability
MSRs. Support for specific VMX features is determined by reading capability MSRs.

Appendix H — Field Encoding in VMCS. Enumerates all fields in the VMCS and
their encodings. Fields are grouped by width (16-bit, 32-bit, etc.) and type (guest-
state, host-state, etc.).

Appendix I — VM Basic Exit Reasons. Describes the 32-bit fields that encode
reasons for a VM exit. Examples of exit reasons include, but are not limited to: soft-
ware interrupts, processor exceptions, software traps, NMls, external interrupts, and
triple faults.

Appendix J— VM Instruction Error Numbers. Describes the VM-instruction error
codes generated by failed VM instruction executions (that have a valid working-VMCS
pointer).

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. Intel 64 and IA-32 processors are “little endian” machines; this
means the bytes of a word are numbered starting from the least significant byte.
Figure 1-1 illustrates these conventions.

Vol.3A 1-5

ABOUT THIS MANUAL

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

¢ Do not depend on the states of any reserved bits when testing the values of

registers which contain such bits. Mask out the reserved bits before testing.

Do not depend on the states of any reserved bits when storing to memory or to a
register.

Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
Intel 64 and 1A-32 registers. Depending upon the values of reserved
register bits will make software dependent upon the unspecified
manner in which the processor handles these bits. Programs that
depend upon reserved values risk incompatibility with future
processors.

Data Structure
1 24 23 16 15 8 7 0 -«— Bit offset
28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 ByteO | O

A

Byte Offset

Highest 3
Address

Lowest
Address

Figure 1-1. Bit and Byte Order

1-6 Vol. 3A

ABOUT THIS MANUAL

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of assembly language is
used. In this subset, an instruction has the following format:

label: mnemonic argument1, argumentZ2, argument3
where:
® A label is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.

® The operands argumentl, argument2, and argument3 are optional. There
may be from zero to three operands, depending on the opcode. When present,
they take the form of either literals or identifiers for data items. Operand
identifiers are either reserved names of registers or are assumed to be assigned
to data items declared in another part of the program (which may not be shown
in the example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The “B” designation is only used in
situations where confusion as to the type of number might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
For example, a program can keep its code (instructions) and stack in separate

Vol.3A 1-7

ABOUT THIS MANUAL

segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CSEIP

1.3.6 Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a single syntax to represent this type of information. See Figure 1-2.

1-8 Vol.3A

ABOUT THIS MANUAL

Syntax Representation for CPUID Input and Output
CPUID.01H : ECX.SSE [bit 25] = 1

v
Input value for EAX defines output
(NOTE: Some leaves require input values for
EAX and ECX. If only one value is present,
EAX is implied.)

Output register and feature flag or
field name with bit position(s)

Value (or range) of output

For Control Register Values
CR4.0SFXSR[bit 9] =1

Example CR name i

Feature flag or field name
with bit position(s)

Value (or range) of output

For Model-Specific Register Values
IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] =1

Example MSR name i
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

1.3.7

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown

below:
#PF(fault code)

Vol.3A 1-9

ABOUT THIS MANUAL

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce
error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.4 RELATED LITERATURE

Literature related to Intel 64 and I1A-32 processors is listed on-line at this link:
http://developer.intel.com/products/processor/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following
literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
® the data sheet for a particular Intel 64 or 1A-32 processor
® the specification update for a particular Intel 1A-32 or Intel 64 processor

® AP-485, Intel Processor Identification and the CPUID Instruction, Order Number
241618

® Intel® 64 and IA-32 Architectures Optimization Reference Manual, Order
Number 248966

1-10 Vol. 3A

http://developer.intel.com/products/processor/index.htm

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

I1A-32 architecture (beginning with the Intel386 processor family) provides extensive
support for operating-system and system-development software. This support offers
multiple modes of operation, which include:

® Real mode, protected mode, virtual 8086 mode, and system management mode.
These are sometimes referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available
in 1A-32 architecture and extends them to a new operating mode (I1A-32e mode) that
supports a 64-bit programming environment. 1A-32e mode allows software to
operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

® Compatibility mode allows most legacy software to run; it co-exists with 64-bit
applications under a 64-bit OS.

The 1A-32 system-level architecture and includes features to assist in the following
operations:

® Memory management

® Protection of software modules

® Multitasking

® Exception and interrupt handling

® Multiprocessing

® Cache management

® Hardware resource and power management
® Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes
the system registers that are used to set up and control the processor at the system
level and gives a brief overview of the processor’s system-level (operating system)
instructions.

Many features of the system-level architectural are used only by system program-
mers. However, application programmers may need to read this chapter and the
following chapters in order to create a reliable and secure environment for applica-
tion programs.

This overview and most subsequent chapters of this book focus on protected-mode
operation of the 1A-32 architecture. 1A-32e mode operation of the Intel 64 architec-
ture, as it differs from protected mode operation, is also described.

All Intel 64 and 1A-32 processors enter real-address mode following a power-up or
reset (see Chapter 9, “Processor Management and Initialization”). Software then

Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW

initiates the switch from real-address mode to protected mode. If IA-32e mode oper-
ation is desired, software also initiates a switch from protected mode to 1A-32e
mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instruc-
tions designed to support basic system-level operations such as memory manage-
ment, interrupt and exception handling, task management, and control of multiple
processors.

Figure 2-1 provides a summary of system registers and data structures that applies
to 32-bit modes. System registers and data structures that apply to 1A-32e mode are
shown in Figure 2-2.

2-2 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

EFLAGS Register

Control Registers

Physical Address
>

Linear Address
—>

Y

Code, Data or
Stack Segment

Task-State

gﬁg _S?g_m_erl Selector =Segmeth _(T_S?) Task
F— = Cod
CR2 >
CR1 C L =Data
- CRO Global Descriptor Stack
Task Register Table (GDT)
[Segment Sel.} - »| Seg. Desc. |— Irgerrupt Handler
| Code |
Current- — »
Interrupt TSS Seg. Sel.} - »| TSS Desc. TSS || Stack
Vector
) - — - - > Seg. Desc.
Interrupt Descriptor | Task-State
Table (IDT) I - - »| TSS Desc. Segmer]t_(T_S§) > __Task
[-t >Code
Interrupt Gate — — - | LDT Desc. |— ‘L [Data
[- - |: >
Task Gate |- - - - - Stack
GDTR
> TrapGate [--- .
‘ Local Descriptor Exception Handler
L Table (LDT) *TCode |
| Current- — » Stack
IDTR Call-Gate -»| Seg. Desc. TsS L
Segment Selector
| - > CallGate | —|- - 1 Protected Procedure
______ Code
£<— Current- — »
Chii TSS |_ Stack
Linear Address Space Linear Address
4’—>| Dir | Table | Offset |
Linear Addr. Page Directory Page Table Page
Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
o L L
0o This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

*Physical Address

Figure 2-1. IA-32 System-Level Registers and Data Structures

Vol.3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS

Physical Address

Code, Data or Stack

————— >
Control Register Linear Address Segment (Base =0)
CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 Rl >
CR2]
CR1
- CRO Global Descriptor
Task Register Table (GDT)
[Segment Sel.} - »| Seg. Desc. |— Irgelrrupt Handler
NULL - - acode]
Interrupt TR f - »| TSS Desc. Stack
Vector
. - - - -3 Seg. Desc.
Interrupt Descriptor |
Table (IDT) I — — »| Seg.Desc. | Interr. Handler
h Code
Interrupt Gate - — — - LDT Desc. — Current TSS
__‘_—> Stack

Interrupt Gate

| Em
GDTR ST—]

> Trap Gate - -~)

! Local Descriptor Exception Handler

! Table (LDT) > Cod
- NULL - — ;OSth|k

IDTR Call-Gate - »| Seg. Desc.
Segment Selector
| -> CallGate | —|- - N Protected Procedure
______ Code
< NULL - — >
EBiliR |_ Stack
Linear Address Space Linear Address
J—H PML4 | Dir. Pointer | Directory | Table |Offset |
Linear Addr. . .
PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page
Physical
PMLA4. Pg. Dir. Page Thl Addr.
Entry Entry Entry
>
0o _ This page mapping example is for 4-KByte pages
and 40-bit physical address size.

*Physical Address

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

2-4 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the
global descriptor table (GDT) or an optional local descriptor table (LDT) as shown in
Figure 2-1. These tables contain entries called segment descriptors. Segment
descriptors provide the base address of segments well as access rights, type, and
usage information.

Each segment descriptor has an associated segment selector. A segment selector
provides the software that uses it with an index into the GDT or LDT (the offset of its
associated segment descriptor), a global/local flag (determines whether the selector
points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied.
The segment selector provides access to the segment descriptor for the segment (in
the GDT or LDT). From the segment descriptor, the processor obtains the base
address of the segment in the linear address space. The offset then provides the
location of the byte relative to the base address. This mechanism can be used to
access any valid code, data, or stack segment, provided the segment is accessible
from the current privilege level (CPL) at which the processor is operating. The CPL is
defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines
indicate a segment selector, and the dotted arrows indicate a physical address. For
simplicity, many of the segment selectors are shown as direct pointers to a segment.
However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR);
the linear address of the LDT is contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both 1A-32e sub-modes
(64-bit mode and compatibility mode). For more information: see Section 3.5.2,
“Segment Descriptor Tables in 1A-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base
addresses, (16-byte LDT descriptors hold a 64-bit base address and various
attributes). In compatibility mode, descriptors are not expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of
a program or procedure, the architecture defines two system segments: the task-
state segment (TSS) and the LDT. The GDT is not considered a segment because it is
not accessed by means of a segment selector and segment descriptor. TSSs and LDTs
have segment descriptors defined for them.

Vol.3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

The architecture also defines a set of special descriptors called gates (call gates,
interrupt gates, trap gates, and task gates). These provide protected gateways to
system procedures and handlers that may operate at a different privilege level than
application programs and most procedures. For example, a CALL to a call gate can
provide access to a procedure in a code segment that is at the same or a numerically
lower privilege level (more privileged) than the current code segment. To access a
procedure through a call gate, the calling procedure1 supplies the selector for the call
gate. The processor then performs an access rights check on the call gate, comparing
the CPL with the privilege level of the call gate and the destination code segment
pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from
the call gate. If the call requires a change in privilege level, the processor also
switches to the stack for the targeted privilege level. The segment selector for the
new stack is obtained from the TSS for the currently running task. Gates also facili-
tate transitions between 16-bit and 32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In 1A-32e mode, the following descriptors are 16-byte descriptors (expanded to allow
a 64-bit base): LDT descriptors, 64-bit TSSs, call gates, interrupt gates, and trap
gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task
gates are not supported in 1A-32e mode. On privilege level changes, stack segment
selectors are not read from the TSS. Instead, they are set to NULL.

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task.
It includes the state of general-purpose registers, segment registers, the EFLAGS
register, the EIP register, and segment selectors with stack pointers for three stack
segments (one stack for each privilege level). The TSS also includes the segment
selector for the LDT associated with the task and the page-table base address.

All program execution in protected mode happens within the context of a task (called
the current task). The segment selector for the TSS for the current task is stored in
the task register. The simplest method for switching to a task is to make a call or
jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the
following actions:

1. Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or
block of code (such as a program, procedure, function, or routine).

2-6 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

3. Accesses the new TSS through a segment descriptor in the GDT.

Loads the state of the new task from the new TSS into the general-purpose
registers, the segment registers, the LDTR, control register CR3 (page-table base
address), the EFLAGS register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate,
except that it provides access (through a segment selector) to a TSS rather than a
code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in 1A-32e mode. However, TSSs continue
to exist. The base address of a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

® Pointer addresses for the interrupt stack table

® Offset address of the 10-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in 1A-32e mode. See also:
Section 6.7, “Task Management in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the
interrupt descriptor table (IDT). The IDT stores a collection of gate descriptors that
provide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment. The linear address for the base of the IDT is contained in the IDT register
(IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access
an interrupt or exception handler, the processor first receives an interrupt vector
(interrupt number) from internal hardware, an external interrupt controller, or from
software by means of an INT, INTO, INT 3, or BOUND instruction. The interrupt
vector provides an index into the IDT. If the selected gate descriptor is an interrupt
gate or a trap gate, the associated handler procedure is accessed in a manner similar
to calling a procedure through a call gate. If the descriptor is a task gate, the handler
is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In 1A-32e mode, interrupt descriptors are expanded to 16 bytes to support 64-bit
base addresses. This is true for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not
supported.

Vol.3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual
memory (through paging). When physical addressing is used, a linear address is
treated as a physical address. When paging is used: all code, data, stack, and system
segments (including the GDT and IDT) can be paged with only the most recently
accessed pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is
contained in two types of system data structures: page directories and page tables.
Both structures reside in physical memory (see Figure 2-1).

The base physical address of the page directory is contained in control register CR3.
An entry in a page directory contains the physical address of the base of a page table,
access rights and memory management information. An entry in a page table
contains the physical address of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into three parts. The parts
provide separate offsets into the page directory, the page table, and the page frame.
A system can have a single page directory or several. For example, each task can
have its own page directory.

2.1.5.1 Memory Management in IA-32e Mode

In 1A-32e mode, physical memory pages are managed by a set of system data struc-
tures. In compatibility mode and 64-bit mode, four levels of system data structures
are used. These include:

® The page map level 4 (PML4) — An entry in a PML4 table contains the physical
address of the base of a page directory pointer table, access rights, and memory
management information. The base physical address of the PML4 is stored in
CR3.

® A set of page directory pointers — An entry in a page directory pointer table
contains the physical address of the base of a page directory table, access rights,
and memory management information.

® Sets of page directories — An entry in a page directory table contains the
physical address of the base of a page table, access rights, and memory
management information.

® Sets of page tables — An entry in a page table contains the physical address of
a page frame, access rights, and memory management information.

2-8 Vol.3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system
architecture provides system flags in the EFLAGS register and several system
registers:

® The system flags and IOPL field in the EFLAGS register control task and mode
switching, interrupt handling, instruction tracing, and access rights. See also:
Section 2.3, “System Flags and Fields in the EFLAGS Register.”

® The control registers (CRO, CR2, CR3, and CR4) contain a variety of flags and
data fields for controlling system-level operations. Other flags in these registers
are used to indicate support for specific processor capabilities within the
operating system or executive. See also: Section 2.5, “Control Registers.”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for
use in debugging programs and systems software. See also: Chapter 18,
“Debugging and Performance Monitoring.”

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes
(limits) of their respective tables. See also: Section 2.4, “Memory-Management
Registers.”

® The task register contains the linear address and size of the TSS for the current
task. See also: Section 2.4, “Memory-Management Registers.”

® Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to
operating-system or executive procedures (that is, code running at privilege level 0).
These registers control items such as the debug extensions, the performance-moni-
toring counters, the machine- check architecture, and the memory type ranges
(MTRRS).

The number and function of these registers varies among different members of the
Intel 64 and 1A-32 processor families. See also: Section 9.4, “Model-Specific Regis-
ters (MSRs),” and Appendix B, “Model-Specific Registers (MSRs).”

Most systems restrict access to system registers (other than the EFLAGS register) by
application programs. Systems can be designed, however, where all programs and
procedures run at the most privileged level (privilege level 0). In such a case, appli-
cation programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In 1A-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and
TR) are expanded in hardware to hold 64-bit base addresses. EFLAGS becomes the
64-bit RFLAGS register. CRO-CR4 are expanded to 64 bits. CR8 becomes available.
CR8 provides read-write access to the task priority register (TPR) so that the oper-
ating system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO—DR7 are 64 bits. In compatibility mode,
address-matching in DRO-DR3 is also done at 64-bit granularity.

Vol.3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

On systems that support 1A-32e mode, the extended feature enable register
(IA32_EFER) is available. This model-specific register controls activation of 1A-32e
mode and other 1A-32e mode operations. In addition, there are several model-
specific registers that govern 1A-32e mode instructions:

® 1A32_KernelGSbase — Used by SWAPGS instruction.

® 1A32_LSTAR — Used by SYSCALL instruction.

® 1A32_SYSCALL_FLAG_MASK — Used by SYSCALL instruction.
® 1A32_STAR_CS — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections,
system architecture provides the following additional resources:

® Operating system instructions (see also: Section 2.6, “System Instruction
Summary”).

® Performance-monitoring counters (not shown in Figure 2-1).
® Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to
count processor events such as the number of instructions decoded, the number of
interrupts received, or the number of cache loads. See also: Section 18, “Debugging
and Performance Monitoring.”

The processor provides several internal caches and buffers. The caches are used to
store both data and instructions. The buffers are used to store things like decoded
addresses to system and application segments and write operations waiting to be
performed. See also: Chapter 10, “Memory Cache Control.”

2.2 MODES OF OPERATION

The 1A-32 supports three operating modes and one quasi-operating mode:

® Protected mode — This is the native operating mode of the processor. It
provides a rich set of architectural features, flexibility, high performance and
backward compatibility to existing software base.

® Real-address mode — This operating mode provides the programming
environment of the Intel 8086 processor, with a few extensions (such as the
ability to switch to protected or system management mode).

® System management mode (SMM) — SMM is a standard architectural feature
in all 1A-32 processors, beginning with the Intel386 SL processor. This mode
provides an operating system or executive with a transparent mechanism for
implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which
generates a system management interrupt (SMI). In SMM, the processor
switches to a separate address space while saving the context of the currently

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

running program or task. SMM-specific code may then be executed transparently.
Upon returning from SMM, the processor is placed back into its state prior to the
SMI.

Virtual-8086 mode — In protected mode, the processor supports a quasi-
operating mode known as virtual-8086 mode. This mode allows the processor
execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of 1A-32 architecture and 1A-32e
modes:

1A-32e mode — In 1A-32e mode, the processor supports two sub-modes:
compatibility mode and 64-bit mode. 64-bit mode provides 64-bit linear
addressing and support for physical address space larger than 64 GBytes.
Compatibility mode allows most legacy protected-mode applications to run
unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#

> Real-Address
Mode Reset
ese

) or
Reset or _ RSM
PE=0 PE=1
SMI#
Reset
Protected Mode RS System

Management
Mode

LME=1, CRO.PG=1* gp 4

>
See:\

<
RSM

* See Section 9.8.5
** See Section 9.8.5.4

Virtual-8086
Mode

Figure 2-3. Transitions Among the Processor's Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE
flag in control register CRO then controls whether the processor is operating in real-
address or protected mode. See also: Section 9.9, “Mode Switching.”

The VM flag in the EFLAGS register determines whether the processor is operating in
protected mode or virtual-8086 mode. Transitions between protected mode and

Vol.3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

virtual-8086 mode are generally carried out as part of a task switch or a return from
an interrupt or exception handler. See also: Section 15.2.5, “Entering Virtual-8086
Mode.”

The LMA bit (IA32_EFER.LMA.LMA[bit 10]) determines whether the processor is
operating in 1A-32e mode. When running in 1A-32e mode, 64-bit or compatibility
sub-mode operation is determined by CS.L bit of the code segment. The processor
enters into 1A-32e mode from protected mode by enabling paging and setting the
LME bit (IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and
Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in
real-address, protected, virtual-8086, or 1A-32e modes. Upon execution of the RSM
instruction, the processor always returns to the mode it was in when the SMI
occurred.

2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS
REGISTER

The system flags and IOPL field of the EFLAGS register control 1/0, maskable hard-
ware interrupts, debugging, task switching, and the virtual-8086 mode (see

Figure 2-4). Only privileged code (typically operating system or executive code)
should be allowed to modify these bits.

The system flags and IOPL are:

TF Trap (bit 8) — Set to enable single-step mode for debugging; clear to
disable single-step mode. In single-step mode, the processor generates a
debug exception after each instruction. This allows the execution state of a
program to be inspected after each instruction. If an application program
sets the TF flag using a POPF, POPFD, or IRET instruction, a debug exception
is generated after the instruction that follows the POPF, POPFD, or IRET.

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

31 22212019181716151413121110 9 8 7 6 5 4 3 2 1 0

I
N| O [o[p|1[T|s|z|,[Alq|P|1]C
T| P |F|F|F|F

L

Reserved (set to 0) A M

ID — Identification FlagQ

VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— 1/O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag

I:I Reserved

IF

10PL

NT

Figure 2-4. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to
maskable hardware interrupt requests (see also: Section 5.3.2, “Maskable
Hardware Interrupts”). The flag is set to respond to maskable hardware
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does
not affect the generation of exceptions or nonmaskable interrupts (NMI
interrupts). The CPL, IOPL, and the state of the VME flag in control register
CR4 determine whether the IF flag can be modified by the CLI, STI, POPF,
POPFD, and IRET.

170 privilege level field (bits 12 and 13) — Indicates the 1/0 privilege
level (IOPL) of the currently running program or task. The CPL of the
currently running program or task must be less than or equal to the IOPL to
access the 1/0 address space. This field can only be modified by the POPF
and IRET instructions when operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the
IF flag and the handling of interrupts in virtual-8086 mode when virtual
mode extensions are in effect (when CR4.VME = 1). See also: Chapter 13,
“Input/Output,” in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called
tasks. The processor sets this flag on calls to a task initiated with a CALL
instruction, an interrupt, or an exception. It examines and modifies this flag
on returns from a task initiated with the IRET instruction. The flag can be

Vol.3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

RF

VM

AC

VIF

explicitly set or cleared with the POPF/POPFD instructions; however,
changing to the state of this flag can generate unexpected exceptions in
application programs.

See also: Section 6.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-break-
point conditions. When set, this flag temporarily disables debug exceptions
(#DB) from being generated for instruction breakpoints (although other
exception conditions can cause an exception to be generated). When cleatr,
instruction breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction
following a debug exception that was caused by an instruction breakpoint
condition. Here, debug software must set this flag in the EFLAGS image on
the stack just prior to returning to the interrupted program with IRETD (to
prevent the instruction breakpoint from causing another debug exception).
The processor then automatically clears this flag after the instruction
returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 18.3.1.1, “Instruction-Breakpoint Exception Condition.”

Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to
return to protected mode.

See also: Section 15.2.1, “Enabling Virtual-8086 Mode.”

Alignment check (bit 18) — Set this flag and the AM flag in control register
CRO to enable alignment checking of memory references; clear the AC flag
and/or the AM flag to disable alignment checking. An alignment-check
exception is generated when reference is made to an unaligned operand,
such as a word at an odd byte address or a doubleword at an address which
is not an integral multiple of four. Alignment-check exceptions are generated
only in user mode (privilege level 3). Memory references that default to priv-
ilege level 0, such as segment descriptor loads, do not generate this excep-
tion even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This
is useful when exchanging data with processors which require all data to be
aligned. The alignment-check exception can also be used by interpreters to
flag some pointers as special by misaligning the pointer. This eliminates
overhead of checking each pointer and only handles the special pointer when
used.

Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This
flag is used in conjunction with the VIP flag. The processor only recognizes
the VIF flag when either the VME flag or the PVI flag in control register CR4 is
set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode
extensions; the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 15.3.3.5, “Method 6: Software Interrupt Handling,” and
Section 15.4, “Protected-Mode Virtual Interrupts.”

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an
interrupt is pending; cleared to indicate that no interrupt is pending. This flag
is used in conjunction with the VIF flag. The processor reads this flag but
never modifies it. The processor only recognizes the VIP flag when either the
VME flag or the PVI flag in control register CR4 is set and the IOPL is less than
3. The VME flag enables the virtual-8086 mode extensions; the PVI flag
enables the protected-mode virtual interrupts.

See Section 15.3.3.5, “Method 6: Software Interrupt Handling,” and Section
15.4, “Protected-Mode Virtual Interrupts.”

ID Identification (bit 21). — The ability of a program or procedure to set or
clear this flag indicates support for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits
reserved. System flags in RFLAGS (64-bit mode) or EFLAGS (compatibility mode)
are shown in Figure 2-4.

In 1A-32e mode, the processor does not allow the VM bit to be set because virtual-
8086 mode is not supported (attempts to set the bit are ignored). Also, the processor
will not set the NT bit. The processor does, however, allow software to set the NT bit
(note that an IRET causes a general protection fault in 1A-32e mode if the NT bit is
set).

In 1A-32e mode, the SYSCALL/SYSRET instructions have a programmable method of
specifying which bits are cleared in RFLAGS/EFLAGS. These instructions save/restore
EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR,
and TR) that specify the locations of the data structures which control segmented
memory management (see Figure 2-5). Special instructions are provided for loading
and storing these registers.

Vol.3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
5 0 Attributes
Task I seq. sel 32(64)-bit Linear Base Add Segment Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-5. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in
1A-32e mode) and the 16-bit table limit for the GDT. The base address specifies the
linear address of byte 0 of the GDT; the table limit specifies the number of bytes in
the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of O
and the limit is set to OFFFFH. A new base address must be loaded into the GDTR as
part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, “Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in 1A-32e mode), segment limit, and descriptor attributes
for the LDT. The base address specifies the linear address of byte O of the LDT
segment; the segment limit specifies the number of bytes in the segment. See also:
Section 3.5.1, “Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR
register, respectively. The segment that contains the LDT must have a segment
descriptor in the GDT. When the LLDT instruction loads a segment selector in the
LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are
automatically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment
selector and descriptor for the LDT for the new task. The contents of the LDTR are not
automatically saved prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set
to the default value of 0 and the limit is set to OFFFFH.

2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

243 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in
IA-32e mode) and 16-bit table limit for the IDT. The base address specifies the linear
address of byte 0 of the IDT; the table limit specifies the number of bytes in the table.
The LIDT and SIDT instructions load and store the IDTR register, respectively. On
power up or reset of the processor, the base address is set to the default value of O
and the limit is set to OFFFFH. The base address and limit in the register can then be
changed as part of the processor initialization process.

See also: Section 5.10, “Interrupt Descriptor Table (IDT).”

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in
protected mode; 64 bits in 1A-32e mode), segment limit, and descriptor attributes
for the TSS of the current task. The selector references the TSS descriptor in the GDT.
The base address specifies the linear address of byte 0 of the TSS; the segment limit
specifies the number of bytes in the TSS. See also: Section 6.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task
register, respectively. When the LTR instruction loads a segment selector in the task
register, the base address, limit, and descriptor attributes from the TSS descriptor
are automatically loaded into the task register. On power up or reset of the processor,
the base address is set to the default value of O and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the
segment selector and descriptor for the TSS for the new task. The contents of the
task register are not automatically saved prior to writing the new TSS information
into the register.

2.5 CONTROL REGISTERS

Control registers (CRO, CR1, CR2, CR3, and CR4; see Figure 2-6) determine oper-
ating mode of the processor and the characteristics of the currently executing task.
These registers are 32 bits in all 32-bit modes and compatibility mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions
are used to manipulate the register bits. Operand-size prefixes for these instructions
are ignored. The following is also true:

® Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing
a nonzero value to any of the upper 32 bits results in a general-protection
exception, #GP(0).

® All 64 bits of CR2 are writable by software.
® Bits 51:40 of CR3 are reserved and must be 0.

Vol.3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

The MOV CRn instructions do not check that addresses written to CR2 and CR3
are within the linear-address or physical-address limitations of the implemen-
tation.

Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control
field in these control registers are described individually. In Figure 2-6, the width of
the register in 64-bit mode is indicated in parenthesis (except for CRO).

CRO — Contains system control flags that control operating mode and states of
the processor.

CR1 — Reserved.

CR2 — Contains the page-fault linear address (the linear address that caused a
page fault).

CR3 — Contains the physical address of the base of the page directory and two
flags (PCD and PWT). This register is also known as the page-directory base
register (PDBR). Only the most-significant bits (less the lower 12 bits) of the base
address are specified; the lower 12 bits of the address are assumed to be 0. The
page directory must thus be aligned to a page (4-KByte) boundary. The PCD and
PWT flags control caching of the page directory in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base
address of the page-directory-pointer table In I1A-32e mode, the CR3 register
contains the base address of the PML4 table.

See also: Section 3.8, “36-Bit Physical Addressing Using the PAE Paging
Mechanism.”

CR4 — Contains a group of flags that enable several architectural extensions,
and indicate operating system or executive support for specific processor capabil-
ities. The control registers can be read and loaded (or modified) using the move-
to-or-from-control-registers forms of the MOV instruction. In protected mode,
the MOV instructions allow the control registers to be read or loaded (at privilege
level 0 only). This restriction means that application programs or operating-
system procedures (running at privilege levels 1, 2, or 3) are prevented from
reading or loading the control registers.

CR8 — Provides read and write access to the Task Priority Register (TPR). It
specifies the priority threshold value that operating systems use to control the
priority class of external interrupts allowed to interrupt the processor. This
register is available only in 64-bit mode. However, interrupt filtering continues to
apply in compatibility mode.

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

31(63) 13121110 98 7 6 5 43 2 1 0
%
Reserved (set to 0) Mio|o Z Z @ ,’Z 2 D g \’j M CR4
>E< Elele|e|E|B|D|1|E
OSXMMEXCPTJ
OSFXSR
31(63) 12 11 5432
PP
. CR3
Page-Directory Base c\w
9 y o|T (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
CR1
3130 29 28 1918 17 16 15 6543210
PlcIN Al |w N|E|T|E|M|P
G|D|wW M| |P E|T|s|m|p|e| CRO

D Reserved

Figure 2-6. Control Registers

When loading a control register, reserved bits should always be set to the values
previously read. The flags in control registers are:

PG

CD

Paging (bit 31 of CRO) — Enables paging when set; disables paging when
clear. When paging is disabled, all linear addresses are treated as physical
addresses. The PG flag has no effect if the PE flag (bit O of register CRO) is
not also set; setting the PG flag when the PE flag is clear causes a general-
protection exception (#GP). See also: Section 3.6, “Paging (Virtual Memory)
Overview.”

On Intel 64 processors, enabling and disabling 1A-32e mode operation also
requires modifying CRO.PG.

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear,
caching of memory locations for the whole of physical memory in the
processor’s internal (and external) caches is enabled. When the CD flag is
set, caching is restricted as described in Table 10-5. To prevent the processor
from accessing and updating its caches, the CD flag must be set and the
caches must be invalidated so that no cache hits can occur.

Vol.3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

NW

AM

WP

NE

ET

TS

See also: Section 10.5.3, “Preventing Caching,” and Section 10.5, “Cache
Control.”

Not Write-through (bit 29 of CRO) — When the NW and CD flags are
clear, write-back (for Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors) or write-through (for Intel486 processors) is enabled for writes that hit
the cache and invalidation cycles are enabled. See Table 10-5 for detailed
information about the affect of the NW flag on caching for other settings of
the CD and NW flags.

Alignment Mask (bit 18 of CRO) — Enables automatic alignment checking
when set; disables alignment checking when clear. Alignment checking is
performed only when the AM flag is set, the AC flag in the EFLAGS register is
set, CPL is 3, and the processor is operating in either protected or virtual-
8086 mode.

Write Protect (bit 16 of CRO) — Inhibits supervisor-level procedures from
writing into user-level read-only pages when set; allows supervisor-level
procedures to write into user-level read-only pages when clear (regardless of
the U/S bit setting; see Section 3.7.6). This flag facilitates implementation of
the copy-on-w